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(d) Dual-Beam BSSRDF

Figure 1: The quantized-diffusion BSSRDF (b) was the first analytic BSSRDF to support exponentially-extended first-collision sources inside
the translucent material, leading to improved high-frequency performance relative to the classic dipole model (a). The photon-beam diffusion
BSSRDF (c) proposes an oblique generalization of (b) for the incident refracted ray, and tilts the negative image sources outside the volume
to satisfy the boundary condition. However, this method, like (a) and (b) assumes a Fresnel-modulated Lambertian shape for the exitant
radiance at xo, leading to a non-reciprocal model with poor angular accuracy. Our new dual-beam BSSRDF considers an exponentially-
extended last-event detector (shown in green) inside the medium leading to the first reciprocal 8D semi-analytic BSSRDF that closely matches
the associated BRDF benchmarks for the semi-infinite medium.

Abstract

We present a novel BSSRDF for rendering translucent materials.
Angular effects lacking in previous BSSRDF models are incorpo-
rated by using a dual-beam formulation. We employ a Placzek’s
Lemma interpretation of the method of images and discard diffu-
sion theory. Instead, we derive a plane-parallel transformation of
the BSSRDF to form the associated BRDF and optimize the image
confiurations such that the BRDF is close to the known analytic so-
lutions for the associated albedo problem. This ensures reciprocity,
accurate colors, and provides an automatic level-of-detail transition
for translucent objects that appear at various distances in an image.
Despite optimizing the subsurface fluence in a plane-parallel set-
ting, we find that this also leads to fairly accurate fluence distribu-
tions throughout the volume in the original 3D searchlight problem.
Our method-of-images modifications can also improve the accuracy
of previous BSSRDFs.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity;
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1 Intro

The importance and challenge of accurately and efficiently ren-
dering translucent materials has led to the introduction of a num-
ber of approximate bidirectional surface-scattering reflectance dis-
tribution functions (BSSRDFs). For a flat, thick medium, the
BSSRDF follows directly from a solution to the searchlight prob-
lem [Williams 2007]. Most practical searchlight BSSRDF models
in graphics [Jensen et al. 2001; Donner and Jensen 2005; D’Eon
and Irving 2011] gain efficiency by sacrificing angular accuracy—
they assume light arrives normal to the surface and derive a radial
profile Rd(r) for the total diffusive exitance at a given distance r
from the point of illumination, and this energy is spread into the

outgoing directions in an ad hoc way. In this paper we present a
new BSSRDF that is related to these previous methods, but is fully
8D and is accurate in both the spatial and angular domains. Our
approach is motivated by several desired properties:

• For use in computer graphics, the BSSRDF should be rel-
atively simple and compact (this excludes expensive Monte
Carlo methods and several recent 3D searchlight solu-
tions [Liemert and Kienle 2012; Liemert and Kienle 2013;
Gardner et al. 2013])

• The BSSRDF should compare closely to its associated BRDF,
formed by lateral integration over the surface. This excludes
non-reciprocal models that cling to a diffusion-based exitance
calculation [Donner and Jensen 2007; Habel et al. 2013].

2 A Dual-Beam BSSRDF

The derivation of our new BSSRDF follows from three key obser-
vations:

• Davison [2000] noted long ago that the most efficient way
to compute the radiance in an isotropically-scattering infinite
medium due to an isotropic point source is by forming a line-
integral of the fluence. We employ this technique to compute
the exitant radiance leaving a semi-infinite half-space.

• The method of images used to formulate the diffusion dipole
and related models can be interpreted as an approximate ap-
plication of Placzek’s Lemma [Case et al. 1953]—a method
for constructing exact solutions to finite medium problems
using only infinite medium Green’s functions. We use Gros-
jean’s point source Green’s function and revisit the method of
images to better suit application of Davison’s method by op-
timizing for accurate fluence solutions inside the half space
instead of accurate flux at the surface.

• The associated BRDF for a method of images BSSRDF can be
written down in a compact form. This is the foundation of our
plane-parallel framework for efficiently applying the previous
two observations to design new method-of-images BSSRDFs



using the associated BRDF as an accuracy metric.

We now describe our new BSSRDF. In our notation, exitant radi-
ance at a surface location ~xo in direction ~ωo is computed by inte-
grating the incident radiance Li(xi, ~ωi) with a BSSRDF S:

Lo(xo, ~ωo) =

∫
A

∫
2π

S(xi, ~ωi;xo, ~ωo)Li(xi, ~ωi)(~n· ~ωi) dωi dA(xi).

The BSSRDF is split into reduced-intensity, single-scattering, and
multiple-scattering components, each treated separately,

S = S(0) + S(1) + Sd.

For the half-space problem we consider here, S(0) = 0. No un-
collided energy can leave the medium because we assume it is flat
and infinitely thick. Approximate application of this BSSRDF to
curved geometries should compute S(0) using simple attenuated
ray-tracing methods. Single scattering S(1) can be computed us-
ing known methods [Jensen et al. 2001; Holzschuch 2013].

For computing the multiply-scattered portion of the BSSRDF, Sd,
we directly apply Davison’s method and write the exitant radiance
as an integral of the fluence within the medium at all positions prior
to their last scattering event:

Sd (xi, ~ωi;xo, ~ωo) = Ft(xo, ~ωo, η)

∫ ∞
0

e−µtu α

4π
φ( ~xo+uR( ~ωo))du.

(1)
This integral starts at the exitant position xo and considers all loca-
tions inside the medium along the adjoint refracted ray (illustrated
in green in Figure 1d). At each subsurface location ~x a portion
(specifically α/(4π)) of the subsurface fluence φ(~x) scatters into
the green outgoing refracted ray. We must consider all locations
a distance u along the adjoint refracted direction R( ~ωo). At each
subsurface position along this ray the energy that continues unscat-
tering to the boundary is attenuated based on µt = µs+µa, the sum
of the scattering and absorption coefficients, as well as by a Fres-
nel transmission term Ft upon exiting the medium. The subsurface
fluence φ arises due to illumination by a pencil beam striking the
surface at position ~xi and refracting into the medium along direc-
tion R( ~ωi). Instead of assuming all first-scatter events occur at one
mean-free-path along this ray (as in the dipole model) we also form
the subsurface fluence φ(~x) as a line integral of first-scatter events
(following Grosjean [1958]):

φ(~x) = Ft(xi, ~ωi, η)L(~xi, ~ωi)

∫ ∞
0

αe−µtvφM (~x, ~xi+vR( ~ωi))dv.

(2)
In contrast to previous diffusion-based BSSRDFs in graphics, here
we do not compute the exitant radiance by estimating a flux balance
at the boundary location xo. Instead, our new formulation requires
an accurate estimation of φM (~x,~s)—the fluence at position ~x be-
low the surface in a half-space due to an isotropic point source at
another subsurface location ~s. Thus, φM (~x,~s) is the point-to-point
Green’s function for the half space. The first interaction of the inci-
dent illumation with the medium is represented as a continuum of
point sources (a beam), each of which contribute to the last-event
gather beam towards the eye. Thus, our method is a dual-beam
integral of the point-to-point half-space Green’s function.

We approximate the point-to-point Green’s function in the next sec-
tion using a modified method of images (which then leads to pos-
itive and negative tilted incident beams, illustrated in Figure 1d).
Note that φM excludes the reduced-intensity fluence of the incident
beam itself, which includes a δ function for when the two beams
cross (ignored because this corresponds to single-scattering).

3 The Method of Images

The method of images is an efficient technique for constructing ap-
proximate transport theory solutions to non-infinite medium prob-
lems by linearly combining positive and negative multiples of
known solutions to infinite medium problems. As such, it is closely
related to Placzek’s Lemma [Case et al. 1953] (which proves that
this process can be made exact for any convex medium). In this sec-
tion we modify the method of images for accurately approximating
the fluence φM (~x,~s) at any position ~x within a halfspace due to
a subsurface point source at position ~s. This contrasts from previ-
ous applications in graphics that analyze fluxes at the boundary and
propose placement of negative point sources such that the exitant
flux is accurate (with no specific regard to internal distributions).
Where previous methods draw upon known properties of solutions
to the Milne problem for placing negative sources, we propose a
novel plane-parallal framework for efficiently solving for source
configurations such that desired benchmark solutions are optimally
approximated, such as the associated BRDF of the half-space.

Like the quantized-diffusion BSSRDF [D’Eon and Irving 2011],
we employ Grosjean’s approximate closed-form approximation for
fluence φ(r) due to an isotropic point source [Grosjean 1956] in
an infinite isotropically-scattering medium. To simplify the anal-
ysis, in this section we consider a homogeneous half space with
isotropic scattering with single-scattering albedo α, unit interaction
coefficient µt = 1, µa = 1 − α, µs = α, and vacuum boundary
conditions (η = 1, Ft = 1).

3.1 Infinite Medium Solutions for Plane Sources

We express Grosjean’s infinite medium isotropic point source
Green’s function as a sum of uncollided (un) and diffusive (D) terms

G(r) = Gun(r) +GD(r) =
e−r

4πr2
+ CD

e−µeffr

r
(3)

where

CD =
1

4π

3α

2− α, µeff =

√
µa
D
, D =

2− α
3

(4)

3.1.1 The Point-to-Plane Transformation

The associated BRDF of a BSSRDF is found by lateral integra-
tion of the BSSRDF over all positions xi on the surface, with ~ωi
and ~ωo fixed (which is then independent of ~xo). This transforms
isotropic point sources into isotropic plane sources. The method
of images BRDF for a half space thus requires the plane source
Green’s function for an infinite medium. The exact solution is
known but involves an integral over the continuous spectrum of
eigenvalues of the transport operator [Case and Zweifel 1967]. In-
stead, we apply the plane-to-point transform [Bell and Glasstone
1970] to Grosjean’s approximate point source Green’s function to
form the laterally-integrated uncollided fluence φun at depth z due
to a plane source at depth zp,

φun(z, zp) =

∫ ∞
0

2πrGun(
√
r2 − (z − zp)2)dr = −

1

2
Ei(−|z−zp|)

(5)
where Ei is the exponential integral function [Case and Zweifel
1967]. The same transformation of the diffusive term leads to the
laterally-integrated diffusive fluence φD at depth z due to a plane
source at depth zp,

φD(z, zp) =

∫ ∞
0

2πrGD(
√
r2 − (z − zp)2)dr =

2π CD

µeff
e−µeff|z−zp|.

(6)



The sum φun+φD provides a useful and accurate approximation for
the plane-source Green’s function for an infinite medium.

3.2 Half-Space Solutions for plane sources

Applying the plane-parallel analog of the diffusion dipole, the flu-
ence φM at some position in a half-space is approximated as the
sum of two infinite plane-source Green’s functions, one positive
function at the location of the source, and one negative source mir-
rored about some plane, typically outside the medium. Here, we
generalize this process by separating the location of the negative
uncollided and diffusive sources, as well as introducing scaling fac-
tors for each. We suppose that the subsurface fluence is well ap-
proximated by:

φM (~x,~s) = G(||~x−~s||)−aunGun(||~x− ~svun||)−aDGD(||~x− ~svD||)
(7)

where position ~svun is the virtual source location for the uncol-
lided portion of the Green’s function, and ~svD is the virtual source
location for the diffusive portion of the Green’s function. Placzek’s
lemma would seem to imply that a negative uncollided term out-
side the media is needed (and is consistent with previous diffu-
sion model’s overestimation of exitance). However, the plane about
which to mirror the point source is not necessarily the same for the
uncollided vs the collided term, so we independently optimize for
two different mirror distances, zbun for the uncollided portion, and
zbD for the diffusive portion of the fluence.

We can now write down the associated BRDF for this method-
of-images BSSRDF by computing the two integrations outlined in
Section 2 to the plane-source transformed fluence function φM . We
later optimize for parameters zbun, zbD , aun, and aD that make this
BRDF (and its related BSSRDF) accurate.

The component of the BRDF due to the positive uncollided term in
φM will correspond exactly to the doubly-scattered light exiting the
medium, which is known in closed form [Sears 1975]

f2(ui, uo) =
α2

4π

uiarccoth(1 + 2ui) + uoarccoth(1 + 2uo)

ui + uo
.

(8)
where the direction cosines are ui = cos θi and uo = cos θo. The
component of the BRDF due to the negative mirrored uncollided
term is

fun−(ui, uo, zb) =
α2

4π

∫∫
e−ue−vφun(vuo,−uui−2zb)dudv =

−α2Ei(−2zb)
4π

+

α2

(
uie

2zb
ui Ei

(
2(ui+1)zb
−ui

)
− uoe

2zb
uo Ei

(
2(uo+1)zb
−uo

))
4π(ui − uo)

.

(9)

where we have used η = 1 to ignore refraction for now. A simi-
lar analysis gives the positive and negative BRDF terms due to the
diffusive sources:

fD+(u,uo) =
2π(2µeffuiuo + ui + uo)

µeff(µeffui + 1)(µeffuo + 1)(ui + uo)
(10)

and

fD−(u,uo, zb) = −
2πe−2µeffzb

(µ2
effui + µeff) (µeffuo + 1)

(11)

The associated BRDF for the multiply-scattered light fm is thus

fm(ui, uo) = α2 CD [fD+(ui, uo)− aD fD−(ui, uo, zbD)]
− aun fun−(ui, uo, zbun) + f2(ui, uo) (12)
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Figure 2: a) Optimized method-of-images parameters for various
single-scattering albedos, α. The four curves are zbun (red), zbD
(continuous blue), aun (dashed), and aD (circles). b) Compari-
son of the optimal diffusive extrapolation distance zbD (circles) and
that predicted by diffusion theory zb = 2D (dashed). Our new opti-
mized result (continuous curve) adapts to an optimal configuration
not predicted by diffusion theory.

4 Benchmarking Angular BSSRDFs

To optimize for mirror distances zbun for positioning the negative
uncollided fluence sources, and zbD for positioning the negative
diffusive fluence images (in either the BRDF or the BSSRDF form)
and for the scaling weights aun for the negative uncollided term
and aD for the negative diffusive term, we choose the exact solu-
tion for the half-space albedo problem [Chandrasekhar 1960] as our
accuracy benchmark:

fr(ui, uo) =
α

4π

H(ui)H(uo)

ui + uo
(13)

thereby prioritizing accurate angular variation and total reflectances
above low order scattering of isolated beam illumination (since
piece-wise uniform/smooth lighting scenarios are far more preve-
lant). This solution uses Chandrasekhar’s H-function. To compare
to the associated BRDF we derived in the previous section, we must
subtract the singly-scattered reflectance,

f1(ui, uo) =
α

4π

1

ui + uo
(14)

to form the multiple-scattering BRDF, fm = fr − f1, which we
compare to Equation 12.

We fixed ui = 1 to optimize for normally-incident illumination and
sampled fm at 20 discrete values for uo ∈ [0, 1]. We performed
a Levenberg-Marquardt optimization (using a mean square differ-
ence between the associated BRDF and the benchmark solution) to
solve for {zbun, zbD, aun, aD} given α. The optimal coefficients
are shown in Figure 2a as a function of α. We see that the optimal
solution is similar to the Grosjean diffusion configuration proposed
by d’Eon and Irving [D’Eon and Irving 2011]—for low absorption
levels the optimal extrapolation distance zbD is close to 2D (Fig-
ure 2b) and the scale factor of the negative diffusive source is near
1.0. It is also clear that the negative uncollided term is useful for
improving the accuracy of the method of images for the half space
and its optimal extrapolation distance is near 0.0 (but with an in-
tensity that varies with absorption level and much less than 1.0).

In Figure 4 we illustrate the behaviour of the optimized dual-beam
BRDF for three absorption levels α ∈ {0.99, 0.91, 0.5} and for
three incident angles. In all cases the dual-beam method-of-images
BRDF is quite close to the benchmark solution and exhibits de-
sired angular and total reflectance accuracy that Photon Beam Dif-
fusion [Habel et al. 2013] lacks. The optimized parameters for
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Figure 3: Reflected radiance along the outward normal due to multiple scattering of beam illumination striking a homogeneous half space
with isotropic scattering and indexed-matched (η = 1) boundaries. Our new dual-beam BSSRDF (middle row) closely matches Monte Carlo
simulation (MC). The recent Photon Beam Diffusion (PBD) model computes the total exitant flux, not the angularly-resolved exitant radiance,
and thus is not reciprocal and lacks accurate total reflectances at oblique angles. The angle of incidence θi and radius of the beam rb (in
mean-free-paths) are varied in each column. The mean free path of the medium is 1 at all wavelengths, with spectral single-scattering albedo
{0.99, 0.91, 0.5}. An unrealistic gamma correction of 6.0 was applied to the images to compare to [Habel et al. 2013].

α = 0.99 were zbun = 0.011, zbD = 0.667, aun = 0.457, aD =
1.01, for α = 0.91 were zbun = −0.003, zbD = 0.697, aun =
0.27, aD = 1., and for α = 0.5 were zbun = −0.0285, zbD =
1.089, aun = 0.0671, aD = 1.036. An approximate fit for the
mirror distances (in mean free paths) and scale factors for α > 0.5
is:

zbD(α) = 0.335867α2 − 0.62166α+
0.944945√

α

zun(α) = max(−0.03, 0.154352α− 0.142497)

aun(α) = −7.7 + 9.8α3 − 22.8α2 + 20α+
1.1

α

aD(α) = 0.359563α2 − 0.692592α+ 1.34954

5 Application of the Dual-Beam BSSRDF

Given a BSSRDF that has been optimized to have accurate BDRF
behaviour, we return to its application to render translucent materi-
als. Applying the BSSRDF requires evaluating both of the “beam”
integrals efficiently. This is closely related to the classic problem of
estimating flux at a point and indeed each integral can be regarded
as a track-length estimator of the associated Green’s function term.
For the uncollided terms, the singularity is of order 1/r2 and the
equi-angular transform of Rief et al. [1984] is useful for forming
an accurate low-order quadrature. We found that deriving a sim-
ilar 1/r singularity transform for the diffusive terms, and apply-
ing a Gaussian quadrature post transformation allows a low number
of regular samples to efficiently evaluate the track-length integrals.
These ideas are closely related to the application of track-length
estimators in graphics [Novák et al. 2012; Habel et al. 2013], and
our evaluation of the dual-beam integration follows Novak for the
most part. To avoid quadrature errors from skewing the compari-
son in Figure 3 we used 5000 exponential sample pairs to evaluate
the dual-beam integral, where we show a beam of various widths
striking a surface at various angles with spectral absorption levels.
The PBD result is discernibly more blurred and does not resolve the
subsurface beam correctly, although the overall BRDF characteris-
tics of our dual-beam BSSRDF seems to remain its larger strength,
since such localized beam illumination is incredibly uncommon in
typical image synthesis, whilst accurate colors are important for
predictive rendering and level-of-detail transitions.

6 Conclusions and Future Work

We have presented a novel mathematical framework for design-
ing method-of-images 3D searchlight BSSRDFs. This was used
to derive a new dual-beam BSSRDF for an isotropic half space
that closely matches the benchmark BRDF solution. The result is a
BRDF/BSSRDF pair that can be readily applied using off the shelf
methods for beam-integrals, and that is also reciprocal and produces
accurate colors and angular variation with oblique illumination and
viewing angles. Future work involves a more thorough investiga-
tion of image configurations for boundaries with smooth [Williams
2006] and rough Fresnel interfaces. The latter can be readibly
applied by extending Davison’s line-integral of the exitant radi-
ance stochastically by sampling the rough BTDF for the interface
(and similarily for the source beam). The novel method-of-images
BRDFs may also be of use on their own for approximating coupled
specular/subsurface behaviours.
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Figure 4: The multiply-scattered portion fm of the BRDF for the half-space with isotropic scattering and indexed-matched boundary condi-
tions as predicted by our dual-beam BSSRDF (continuous curve), Photon Beam Diffusion (dot-dashed) and the exact solution (thick-dashed).
The Photon Beam Diffusion method enforces a diffuse angular exitance shape and does not accurately predict the variation in intensity of a
uniformly illuminated surface as the angle of view changes.
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