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Abstract

In a recent work we derived new diffusion approximations for
the collision density and energy density about an isotropic point
source in an infinite isotropically-scattering medium in arbitrary-
dimensional space with general free-path distribution. In this brief
followup we prove several conjectures from our previous paper,
show new results for the energy density about the point source, and
provide more general derivations that avoid the necessity for any
Fourier transforms.
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1 Intro

1.1 New Diffusion Point Source Green’s functions

This work is concerned with the distributions of collisions and the
density of particles or energy in flight around an isotropic point
source in an infinite scattering medium. Specifically, this tech
brief presents new compact analytic solutions to two distinct forms
of diffusion-based approximations for the infinite-medium point-
source Green’s function. These new general forms extend previous
classical methods to support a nascent form of non-classical linear
transport theory where free paths are drawn from an arbitrary distri-
bution, with classical transport theory included as the special case
that the free-path distribution is exponential.

This work briefly follows up on a recent paper [d’Eon 2014b], pro-
viding more general results that are obtained directly from simple
integrals of the free-path distribution, avoiding the machinery of
Fourier transforms used previously.

1.2 Related work

This work presents new compact generalizations of the classi-
cal diffusion point-source fluence Green’s function for the infinite

medium,
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which is the core component of many practical analytic BSSRDFs
in graphics [Farrell et al. 1992; Jensen et al. 2001; Brinkworth 1964;
Donner and Jensen 2005; Donner and Jensen 2007; D’Eon and Irv-
ing 2011; Habel et al. 2013; d’Eon 2014a]. The generalizations of
this distribution that we present below may lead to useful extensions
of the above approaches to support generalized media where the
assumptions of classical transport do not apply [Moon et al. 2007;
Larsen and Vasques 2011; Meng et al. 2015], in particular, where
the free path distribution is not exponential.

We consider the collision density separately from the fluence. We
previously noted [d’Eon 2014b] that, in contrast to alternative
derivations of diffusion approximations for nonclassical Boltzmann
transport [Larsen and Vasques 2011; Frank et al. 2015], a moment-
preserving approach yields differing diffusion lengths and forms for
the density of collisions around a point source versus the scalar flux
or fluence of particles in flight about the point source. We further
explore this difference here.

2 Setup

We consider multiple scattering distributions about an isotropic
point source in a homogeneous infinite medium. We leave the di-
mension of the medium, d, a general parameter. We require the
surface area of the unit sphere in d dimensions
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2.1 Absorption

Our results apply to transport with classical absorption (capture)
with single-scattering albedo 0 < ¢ < 1.

2.2 Free-path distributions

The distribution of free paths between scattering and absorption
events is sampled from the free-path distribution p(s), which is a
normalized distribution on s € [0, oo],

/pr(s)ds =1.

This work additionally requires that the free-path distribution has a
finite mean free path,
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and finite mean square free path
(s?) = / s2p(s)ds. 5)
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Classical transport theory is included in the special case that the
free path distribution is exponential,

p(s) = Ze >, (6)

2.3 Diffusion modes

The radial diffusion mode about a point source in an infinite
medium of dimension d is
-
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where K, (x) is the modified Bessel function of the second kind.



The diffusion mode for the one dimension rod (d = 1) is
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for flatland (d = 2) is
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and for three dimensions is
m3(V,r) = W (10)

3 Collision Density

In this section we present approximations for the probability den-
sity Cp(r) of particles entering collisions at a distance r from
an isotropic point source in an infinite isotropically-scattering
medium. Our approach is to directly seek a form based on diffusion
modes with the requirement that the exact number of collisions and
mean square distance of collisions from the source are preserved.
Thus, the approximations and the exact solution have identical ze-
roth and second radial moments,

Co= /0 Qu(rCul(r)dr,
C, = /w Qd(r)Cpl(r)rzdr,
0
3.1 Summary

3.1.1 Exact Collision density moments

The first two even moments for the density, Cy(r|n), of particles
entering their nth collisions are

/ Qu(r)Cpu(r|n)dr = " (11)
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The first two even moments for the total collision density Cp(r) are
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3.1.2 Classical Diffusion Approximation

The classical diffusion length v for the collision density is given by
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yielding the classical diffusion approximation for the collision den-
sity,
1
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Co(r) = mg(v,r). (16)

3.1.3 Grosjean-form Diffusion Approximation

The Grosjean-form diffusion length v for the collision density is
given by

Vg = %:V\/Z—C (17)

yielding the Grosjean-form diffusion approximation for the colli-
sion density,

Culr) = é’d((’g) + ﬁmd(v(;, r). (18)

4 Scalar Flux / Fluence

To determine the density of particles in flight at some radius » from
the point source we require the source extinction function, related
to the free-path distribution by

s)=1- /Osp(x)dx. (19)

It is important to recall that, in the case of general media, E(s) only
applies to extinction of particles leaving a collision or birth, and
does not apply generally to any particle in flight at any location.
The last quantity we require to determine diffusion forms is the
second spatial moment of E(s),

B — / §)s2ds. (20)

Similar to our approach for the collision densities, we arrive at a
energy-conserving approach requiring that the first two event mo-
ments of the diffusion approximations match the moments of the
exact fluence distribution,
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Our solutions thus preserve the total energy in flight about the point
source as well as the mean-square distance from the source and

produce diffusion lengths that are not proportional to the collision
diffusion lengths.

4.1 Summary
4.1.1 Exact Fluence moments

The first two even moments for the nth-scattered fluence ¢ (r|n) are
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The first two even moments for the total fluence ¢(r) are
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4.1.2 Classical Diffusion Approximation
The classical diffusion length v, for the fluence is given by
Ex(1 —c) + (s)(s*)c
= 25
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yielding the classical diffusion approximation for the fluence,
s
o(r) ~ %md(vq,,r). 26)



4.1.3 Grosjean-form Diffusion Approximation

The Grosjean-form diffusion length v, for the fluence is given by
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yielding the Grosjean-form diffusion approximation for the fluence,
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4.2 Numerical Comparison

In Figure 1 we compare the above diffusion approximations for
Gaussian random flights in 3D (d = 3) with free-path distribution
26*%

p(s) = pa (29)

Collision density Cp(r) and fluence ¢(r) are compared to Monte
Carlo simulations in the same plots. The mean-free path of the
random flight is (s) = 1. The distributions and their Grosjean-form
approximations are significantly different for collision density vs
fluence. In both cases, we see the Grosjean-form approximation
performing well near the source and outperforming the classical
diffusion approximation in the highly-absorbing scenario (single
scattering albedo ¢ = 0.3).

5 Proofs

In the next revision of this tech report, coming soon, we will provide
the proof of these results, which follow directly from the Fourier-
transformed quantities and their derivatives [Zoia et al. 2011].

6 Future Work

6.1 Generalized Dipole and Multipole BSSRDFs

A generalized diffusion dipole model [Farrell et al. 1992; Jensen
et al. 2001] could in theory be derived for non-classical non-
exponential random media using Equation 26 (and its depth gra-
dient) for the fluence poles to generalize the flux balance and
exitance distributions at the boundary of a semi-infinite medium.
Equation 28 would extend this model in the “better” dipole fash-
ion [d’Eon 2012]. Analagous extensions for the multipole BSS-
RDF [Donner and Jensen 2005] are possible.

Extended-source (photon beam) models [Farrell et al. 1992; Don-
ner and Jensen 2007; D’Eon and Irving 2011; Habel et al. 2013]
would likewise generalize using the general free-path distribution
p(s) to distribute fluence poles and their negative mirrors within
the medium at each location of first collision. A dual beam
method [d’Eon 2014a] would, however, use a collision-density
approximation (Equation 18) interior to the medium at the poles
(instead of fluence), with a detector beam employing the source-
extinction function (Equation 19) to attenuate particles leaving col-
lisions and escaping uncollided after their last bounce.

This difference speaks to one important and subtle aspect of gener-
alized transport. With non-exponential transport, the fluence is no
longer proportional to the density of collisions times the scattering
coefficient X, because X, (s) now depends on the free path variable s.
Thus, knowing the radiance or fluence at some point in the medium
is insufficient information for determining the nearby radiance and
evolution of the transport—a complete breakdown of radiance L(s)

is required [Larsen and Vasques 2011]. Simple extinction calcu-
lations are no longer possible—the source-extinction function only
applies to energy leaving a collision or birth. In forward or ad-
joint random walks estimators of generalized transport, Equation 19
can be used for next-event estimation from sampled collisions only.
Care must be taken that all reduced-intensity calculations and track-
length (photon beam) estimators use the source extinction function
(Equation 19) to integrate only collision densities and not fluence.
For complete accuracy, the full free-path s breakdown of the radi-
ance and fluence must be preserved for all transport acceleration
techniques (this was not the case in the sphere-acceleration method
of [Moon et al. 2007] where s was reset to O after leaving each
acceleration sphere).

6.2 Open Problems

The above generalizations will require answers to two open prob-
lems.

6.2.1 Free-path initialization upon entering the medium

As Frank et al. [2015] point out, correct initialization of the free
path parameter s upon entering a semi-finite or finite medium re-
mains an open question. Initialization to 0 might be tempting, but
it seems more likely that some probability weighted initialization
of s will prove most accurate, which may complicate the resulting
BSSRDFs significantly.

6.2.2 Generalized diffusion boundary conditions

Finally, classical diffusion boundary conditions are typically based
on solution to the Milne problem [Aronson 1995], which, to our
knowledge, has no published generalization for general free path
transport.
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Figure 1: Uniform (left) and log (right) plots of a variety of Q-weighted distributions d(r) for Gaussian random flights with ¢ = 0.3 in
3D. The fluence d(r) = ¢(r) is compared in filled (Grosjean) and circles (Monte Carlo). The collision density d(r) = Cy(r) is compared in
green-dot-dashed (classical diffusion), dashed (Grosjean) and non-filled-continuous (MC).
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