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We derive exact solutions of the generalized albedo problem of isotropic scattering in a half space in Rd

with smooth vacuum boundary under monodirectional and uniform diffuse illumination conditions. We

consider general dimension d ≥ 1 and nonclassical transport [1, 2] with a general, nonexponential free-path

distribution pc(s) between collisions and nonstochastic phase function P and single-scattering albedo

0 < c ≤ 1, where absorption is restricted to the collision sites. Photons entering the medium from the

boundary draw their initial free-path lengths from distribution pu(s). The two attenuation laws are

Xc(s) = 1−
∫ s
0 pc(s

′)ds′ between collisions and Xu(s) = 1−
∫ s
0 pu(s′)ds′ from the boundary.

We derive the Green’s function for the half space and the general law of diffuse reflection (BRDF) and

diffuse albedo are also attained, provided the Fourier and inverse Laplace transforms of the Wiener-Hopf

kernel are known. In the talk, we present Monte Carlo validation of these results over a wide variety of

nonclassical media types in a variety of dimensions.

Integral equations: In Rd the surface area Ωd(r) of the sphere of radius r is

Ωd(r) = dπd/2rd−1/(Γ (d/2 + 1)), and the isotropic scattering phase function is P (ωi → ωo) = 1/Ωd(1).

The generalized Peierls integral equation for the scalar collision rate density C(x) is [2, 3]

C(x) = C0(x) + c

∫
Rd

C(x′)
pc(||x− x′||)
Ωd(||x− x′||)

dx′, (1)

where C0(x) is the scalar rate density of initial collisions in the system. Under generalized plane-parallel

symmetry in a half space, where C is uniform in all but one axis x, we find the Wiener-Hopf equation,

C(x) = C0(x) + c

∫ ∞
0

C(x′)KC(x− x′)dx′ (2)

where the collision-rate density kernel KC and its Fourier transform K̃C(t) are

KC(x) =
1

2

∫ 1

0
pc (|x|/µ)

1

µ
G(µ)dµ, K̃C(t) ≡

∫ ∞
−∞

KC(x)eixtdx (3)

using angular measure

G(µ) =
2(1− µ2)

d−3
2 Γ(d2)

√
πΓ
(
d−1
2

) , d > 1 (4)

with G(µ) = 1 in 3D. After determining C(x), the collided scalar flux φc(x) follows from convolution of

cC(x) with kernel Kφ given by Eq.(3) with pc(s) replaced by Xc(s).
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Green’s function: We have, from Ivanov ([4], Eqs. (19) and (21)), that the double Laplace transform of

the reciprocal Green’s function is
¯̄G(s, s0) = Ls [Ls0 [G(x, x0)]] =

H(1/s)H(1/s0)

s+ s0
(5)

in terms of the H function for the given kernel KC . H is given uniquely by [4]

H(z) = exp

(
z

π

∫ ∞
0

1

1 + z2t2
log

[
1

1− c K̃C(t)

]
dt

)
, Re z > 0 (6)

with universal limits H(0) = 1 and H(∞) = (1− c)−1/2. The H function satisfies [4]

H(1/s) = 1 +H(1/s)c

∫ ∞
0

H(1/s′)k(s′)

s+ s′
ds′, (7)

where k(s) is the inverse Laplace transform of the collision rate density kernel,∫ ∞
0

e−s|x|k(s) = KC(x), k(s) =
1

2

∫ 1

0
L−1s u [pc(x)]G(u)du. (8)

Albedo problem: In nonclassical random media, the density of initial collisions for a single photon

entering along direction µ0 is not an exponential, but rather C0(x) = pu(x/µ0)/µ0, which creates a less

direct relationship between the Laplace-transformed Green’s function and the diffuse reflection law. Using

the inverse Laplace transforms of pu(s) and Xc(s), we find the generalized law of diffuse reflection for the

half space in terms of a superposition of the transformed Green’s function,

I(0, µ;−µ0) =
c

2

∫ ∞
0

∫ ∞
0
L−1s0 (pu(x))L−1s (Xc(x))

H(µ/s)H(µ0/s0)

sµ0 + s0µ
ds ds0. (9)

Here, I(0, µ;−µ0) is an “azimuthally-integrated” radiance such that I(0, µ;−µ0)µG(µ) is the rate density

of energy flowing in directions with cosine µ through a surface patch of unit area. Reciprocity is achieved

if and only if the free-path distribution for entering the medium pu(s) is proportional to the extinction

function for leaving a collision Xc(s), in agreement with a previous derivation over single-scattering

paths [5]. Chandrasekhar’s classical result is included above in the case that pu(s) = Xc(s) = e−s, with

L−1si (pu(x)) and L−1si (Xc(x)) given by Dirac deltas. The diffuse albedo under unidirectional illumination

along cosine µ0 is likewise generalized,

R(µ0) =

∫ 1

0
I(0, µ;−µ0)µG(µ)dµ = 1−

√
1− c

∫ ∞
0
L−1si (pu(x))

H(µ0/si)

si
dsi. (10)

Universal properties of nonclassical transport: We also prove a number of universal properties of half

space transport, which hold for any continuous free-path distribution pc(s) and any dimension d ≥ 1,

provided scattering is isotropic. When illuminated by a one-sided isotropic plane source at the boundary,

the half space has universal albedo

R =
2− c− 2

√
1− c

c
. (11)
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Similarly, for grazing illumination, the total reflectance is always R(0) = 1−
√

1− c. For two adjacent

half spaces with differing single scattering albedos c1, c2 and an isotropic source at their interface, we find

the total collision rate in the system ∫ ∞
−∞

C(x)dx =
1√

1− c1
√

1− c2
. (12)

Markovian Binary Mixtures: For multidimensional Levermore-Pomraning random media [1] with

pc(s) =
w−r

2
−e
−r−s + w+r

2
+e
−r+s

〈Σ〉
, Xc(s) =

w−r−e
−r−s + w+r+e

−r+s

〈Σ〉
, (13)

pu(s) = w−r−e
−r−s + w+r+e

−r+s, Xu(s) = w−e−r−s + w+e−r+s, (14)

and constants w− + w+ = 1, 0 < r− < r+, 〈Σ〉 > 0, we find

L−1s (pu(x)) = w−r−δ(s− r−) + w+r+δ(s− r+) (15)

in terms of Dirac delta functions δ, from which, using Eq.(9), we find the law of diffuse reflection,

I(0, µ;−µ0) =
c

2

r+w+H

(
µ

r+

)w+H
(
µ0
r+

)
u+ µ0

+
w−r−H

(
µ0
r−

)
r−µ+ r+µ0


+r−w−H

(
µ

r−

)w−H
(
µ0
r−

)
µ+ µ0

+
w+r+H

(
µ0
r+

)
r−µ0 + r+µ

 . (16)

Combining Eqs.(15) and (10), we find the diffuse albedo under monodirectional illumination to be

R(µ0) = 1−
√

1− c
(
w−H

(
µ0
r−

)
+ w+H

(
µ0
r+

))
. (17)

The H functions for Markovian binary mixtures in Flatland are determined from

K̃C(z) =
1

〈Σ〉

 r2−w−√
r2− + z2

+
r2+w+√
r2+ + z2

 , (18)

and in 3D from

K̃C(z) =
1

〈Σ〉

w−r
2
− tan−1

(
z
r−

)
+ w+r

2
+ tan−1

(
z
r+

)
z

. (19)

Gamma random flights Gamma random flights derive from an intercollision free-path distribution that

is the Laplace transform of the fractional derivative of a Dirac delta,

pc(s) =
e−ssa−1

Γ(a)
=

∫ ∞
0

e−st
δ(a−1)(t− 1)

Γ(a)
dt (20)
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with parameter a > 0, and include classical exponential media when a = 1. The Fourier transform of the

kernels and the Case eigenfunctions generalize, respectively, to

K̃C(z) = 2F1

(
a

2
,
a+ 1

2
;
d

2
;−z2

)
, φ(µ, ν) =

c

2

(
ν

ν − µ

)a
. (21)

In 3D, we find exact analytic solutions of the albedo problem for a ∈ {2, 3, 4}. When a = 2, we find C(x)

to exactly satisfy a diffusion equation. With the escape probability from the medium given by a simple

exponential of depth, we construct the perfectly zero-variance walk for escaping the medium. The diffuse

albedos for monodirectional and uniform diffuse illuminations are,

R(µ0) =
c
(√

1− cµ0 + 2
)

2
(√

1− c+ 1
) (√

1− cµ0 + 1
)
2
, R =

c(√
1− c+ 1

)2 . (22)

The diffuse reflection law for the “diffusion-transport” half space is then the algebraic expression

I(0, µ;−µ0) =
c

4(µ+ µ0)3
[
µ(µ+ µ0)H

′(µ)
(
µ0(µ+ µ0)H

′(µ0) +H(µ0)(2µ+ µ0)
)

+H(µ)
(
µ0(µ+ µ0)(µ+ 2µ0)H

′(µ0) + 2H(µ0)
(
µ2 + 3µµ0 + µ20

))]
(23)

with H(µ) = (1 + µ)/(1 +
√

1− cµ).

Power-law random flights For power law random media [6] with pu(s) =
(

a
a+s

)a+1
, we find, in 3D,

L−1t [pc(s)] =
aae−atta+1

Γ(a)
, k(s) =

∫ 1

0

aae−asu(su)a+1

2Γ(a)
du =

Γ(a+ 2)− Γ(a+ 2, as)

2a2sΓ(a)
. (24)

In the general case, the complexity of the Fourier transform of KC presented numerical difficulty, but we

were able to derive the closed form single-scattering BRDF in 3D [5],

f1(µi, µo) =
c

4π

a 2F1

(
1, a+ 1; 2(a+ 1); 1− µo

µi

)
(2a+ 1)µi

. (25)
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