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A Quantized-Diffusion Model for Rendering Translucent Materials
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Figure 1: Rendering a human face using a single-layer skin model. The classical dipole model (a) is frequency-limited and results in a
waxy-looking appearance, particularly on the lips. A multipole model can create very realistic results, but requires additional material pa-
rameters which are difficult to measure and unintuitive to edit. Our quantized-diffusion model (b) produces accurate all-frequency subsurface
scattering, achieves much of the realism of multilayer models and allows easy appearance editing.

Abstract

We present a new BSSRDF for rendering images of translucent ma-
terials. Previous diffusion BSSRDFs are limited by the accuracy
of classical diffusion theory. We introduce a modified diffusion
theory that is more accurate for highly absorbing materials and
near the point of illumination. The new diffusion solution accu-
rately decouples single and multiple scattering. We then derive a
novel, analytic, extended-source solution to the multilayer search-
light problem by quantizing the diffusion Green’s function. This
allows the application of the diffusion multipole model to material
layers several orders of magnitude thinner than previously possi-
ble and creates accurate results under high-frequency illumination.
Quantized diffusion provides both a new physical foundation and a
variable-accuracy construction method for sum-of-Gaussians BSS-
RDFs, which have many useful properties for efficient rendering
and appearance capture. Our BSSRDF maps directly to previous
real-time rendering algorithms. For film production rendering, we
propose several improvements to previous hierarchical point cloud
algorithms by introducing a new radial-binning data structure and a
doubly-adaptive traversal strategy.
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1 Introduction

Rendering translucent materials is an important and challenging
problem in computer graphics. All non-conducting surfaces (di-
electrics) exhibit some level of subsurface scattering and absorp-
tion. The accurate and efficient simulation of these effects is often
required to achieve the color and soft appearance of media such as
skin, hair, ocean water, wax and marble. Local reflectance models
are insufficiently accurate for this task when the scale of the image
is such that significant levels of light survive subsurface transport
at distances wider than a pixel. A bidirectional scattering-surface
reflectance-distribution function (BSSRDF) is required to describe
such non-local subsurface transport.

This paper presents a new analytic BSSRDF for scattering within
multilayer translucent materials with arbitrary levels of absorption,
very thin layers, and under all-frequency illumination. Our model
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builds on previous analytic methods, making it efficient to evaluate
and easy to integrate into existing software. We improve upon pre-
vious analytic models by not forcing all light to a single depth below
the surface before scattering. Such single-depth models are inaccu-
rate under high-frequency illumination (for example, near shadow
boundaries) (see Figure 1). We derive an analytic model that con-
siders all depths and avoids explicitly placing and contributing from
internal sources in a 3D volume. The contribution from many depth
sources at once arises from the separability of Gaussian functions
and is applied to diffusion theory by temporally quantizing the dif-
fusion Green’s function.1 Boundary conditions are solved using the
method of images and the model is applied to material layers by
use of a new extended multipole model. Together with the mod-
ifications to diffusion theory the extended multipole can describe
multiple scattering within very thin layers.

We begin in the next section with a mathematical description of
the problem and relation to previous work. In Section 3 we high-
light several limitations of classical diffusion theory, motivating the
need for a modified theory. Section 4 introduces a number of diffu-
sion modifications from various other fields which are required for
our new model and also improve previous diffusion models used
in graphics. In Section 5 we derive a novel quantized-diffusion
(QD) model, which makes the extended multipole model practical
in graphics. We conclude our contributions in Section 7, presenting
a number of methods for increasing the quality and efficiency of
BSSRDF rendering algorithms based on irradiance caches.

2 Transport Theory

A description of subsurface light transport is typically made at an
approximate level, avoiding the full complexity of Maxwell’s equa-
tions. Linear transport theory [Case and Zweifel 1967] describes
light or particle propagation through random media at the meso-
scopic level and is the standard framework for simulating light
transport in computer graphics [Kajiya and von Herzen 1984; Ka-
jiya 1986]. In this framework, a scattering and absorbing medium is
completely characterized by the index of refraction h together with
the distribution and properties of absorbing and scattering particles.
Given the number densities rk of (possibly several) absorbers with
absorption cross-sections sak the resulting absorption coefficient2

is µa = Âk rksak. The scattering coefficient µs = Âk rkssk, together
with the phase function p(~w,~w 0), define the behaviour of individual
scattering events. The phase function is a normalized distribution
function for scattering deflections commonly parametrized by the
mean cosine of the deflection angle, g 2 [�1, 1]. We denote the
extinction coefficient µt = µa + µs and the single-scattering albedo
a = µs/µt .

The key continuity equation for linear transport theory, which arises
from a derivation of energy conservation [Williams 1971] or from
more rigorous connections to Maxwell’s equations [van Rossum
and Nieuwenhuizen 1999; Mishchenko 2007], is the linearized
Boltzmann transport equation

~w · —L(~x,~w) =�µt L(~x,~w) + µs

Z

4p
L(~x,~w 0)p(~w,~w 0)dw 0 + Q(~x,~w).

(1)

1 All occurrences of the time variable in this paper refer to the evolution
of photon distributions at time scales many orders of magnitude smaller
than the shutter speed and are unrelated to animation.

2 Following optics, we distinguish between the cross-sections s of particles
[m2] and coefficients µ of the medium [m�1]. The difference has been
previously blurred in other fields, occasionally leading to equations with
inconsistent units.
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Figure 2: The layered 2D searchlight problem is that of finding
the energy reflected R(r) and transmitted T (r) through a layered
scattering material as a function of distance r from the point of
illumination by a focused beam.

Its solution, subject to boundary conditions, provides the radiance
L(~x,~w) at each position ~x and direction along unit vector ~w due to
a given source distribution Q(~x,~w).

2.1 Related Work

Many exact solutions to the transport equation are known for sym-
metries where the radiance within the material L(~x,~w) varies only
with a scalar spatial coordinate [Case and Zweifel 1967]. Several
such 1D solutions3 have been applied in graphics [Blinn 1982; Han-
rahan and Krueger 1993; Stam 2001]. In order to support high-
frequency illumination and produce truly non-local reflectance,
higher dimensional geometries are required and exact solutions
to these problems are rare. A largely successful compromise in
graphics pioneered by Jensen et al. [2001] is the application of ap-
proximate solutions of a 2D version of the searchlight problem to
general, curved surfaces. This approach greatly reduces the com-
plexity of the problem and supports approximate angular incident
and exitance variation by factoring the full BSSRDF into a product
of Fresnel terms and a radially symmetric function.

2.1.1 The Searchlight Problem

Within the framework of transport theory, the exact BSSRDF for a
flat, laterally-homogeneous material follows immediately from the
solution to a problem posed in astrophysics known as the search-
light problem [Chandrasekhar 1958]: the problem of determining
the exitant radiance at all positions and directions on a flat, later-
ally infinite surface due to illumination at a single point and in a
single direction by a focused parallel beam (Figure 2). Rendering a
full range of natural translucent materials requires a solution of the
layered searchlight problem subject to arbitrary absorption levels,
general phase functions, and supporting rough Fresnel interfaces.
We mention an important collection of exact searchlight solutions,
which, to the best of our knowledge, have not been previously rec-
ognized by the computer graphics community. Of particular interest
are the recent 3D solutions given by Williams [2007; 2009]. These
solutions are computationally expensive and restricted to isotropic
semi-infinite media, which limits their use in rendering, but they
provide a benchmark for validating both Monte Carlo reference
implementations and approximate BSSRDFs. An extensive list of
other exact searchlight solutions can be found in [Williams 2007].

Monte Carlo methods such as path tracing [Kajiya 1986] and pho-
ton mapping [Jensen et al. 1999] are very accurate, but exhibit ex-
tremely long convergence times for many common materials such

3 These solutions describe the transport of light in a 3D medium with a
symmetry such that the solution varies only with one scalar spatial coor-
dinate, producing fundamentally 1D equations to solve.
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as skin. Pharr and Hanrahan [2000] used the method of invariant
imbedding to numerically evaluate very general BSSRDFs. This
technique, while faster than standard Monte Carlo methods, is still
computationally expensive.

Lacking an efficient exact solution to the layered searchlight prob-
lem, we turn to approximate methods. The diffusion approxima-
tion [Stam 1995] has led to several very practical solutions of a 2D
searchlight problem using a dipole [Jensen et al. 2001] and later
extended to multilayered materials with a multipole [Donner and
Jensen 2005]. The one-depth source model used by these methods
limits the frequency content of the reflected light and prevents the
application of the multipole to thin material layers. An extended-
source model was used by Donner and Jensen [2007], but must
be numerically integrated and cannot accurately predict reflectance
from thin materials because a reflectance multipole is not used.

Previously proposed diffusion methods in graphics have adopted
classical diffusion theory, which has several known limita-
tions [Davison 1957]. We introduce a modified diffusion theory
that overcomes some of these limitations, improving both the
accuracy of previous methods and our new BSSRDF. The
telegrapher equation is an alternative modification to diffusion
theory [Weinberg and Wigner 1958; Durian and Rudnick 1999],
but has no closed form solution for extended sources and is not as
accurate near the beam as our QD model. Other forms of modified
diffusion theory [Grosjean 1963; Larsen 2010] include a rigorous
diffusion length, but this is unlikely to have any measurable impact
in graphics. Hybrid Monte-Carlo-diffusion techniques, such as [Li
et al. 2005], can also benefit from modified diffusion theory.

Donner et al. [2009] presented an empirical 3D searchlight BSS-
RDF built on extensive Monte Carlo simulation that does not as-
sume the radial symmetry of 2D searchlight solutions and can de-
scribe angular incident and exitant variation. However, their BSS-
RDF is limited to one-layer, infinitely thick materials with non-
rough surfaces. Furthermore, their BSSRDF has not been compared
to any exact transport solutions and is limited in resolution and
range of parameters.

Our QD model produces Gaussian photon distributions around a
point source. An explicit derivation for such distributions after n
scattering events was given and applied for thermal neutron trans-
port by Grosjean [1951]. This is less flexible than a temporal quan-
tization and known to be inaccurate for low n. Similar distributions
were noticed in Monte Carlo simulations by several authors [Spott
and Svaasand 2000; Bouthors et al. 2008] who fit Gaussians to
these empirically. Stam [1995] used Gaussian blobs to accelerate
3D finite element diffusion algorithms. Premoze et al. [2004] used
Gaussian point spread functions placed along an extended source
inside of heterogeneous scattering volumes. None of these works
exploited the separability of Gaussians for computing accurate flux
distributions at surfaces with Fresnel reflectance.

2.1.2 Other Approaches

We have mentioned primarily techniques that provide 2D or 3D
layered searchlight solutions considering Fresnel reflection at the
interface. We refer the reader to the survey by Cerezo et al. [2005]
and to the references in [Pharr and Hanrahan 2000] for a wider
background on solving the transport equation in graphics.

3 Classical Diffusion Theory

The difficulty of solving the transport equation is reduced by con-
sidering angular integrals of the radiance. The PN approximation

c speed of light in medium [m/s]
h relative index of refraction
r number density of particles [m�3]
sa absorption cross-section [m2]
ss scattering cross-section [m2]

µa = Âk rksak absorption coefficient [m�1]
µs = Âk rkssk scattering coefficient [m�1]

µ 0s = (1� g)µs reduced scattering coefficient [m�1]
µt = µs + µa extinction coefficient [m�1]
µ 0t = µ 0s + µa transport coefficient [m�1]

a = µs/µt single-scattering albedo
a 0 = µ 0s/µ 0t reduced single-scattering albedo
` = 1/µt mean free path (mfp) [m]
`0 = 1/µ 0t reduced mean free path (mfp) [m]
p(~w,~w 0) phase function [sr�1]

g average cosine of scattering
D diffusion coefficient [m]
A reflection parameter

L(~x,~w) radiance [W m�2 sr�1]
Li(~x,~w) incident radiance [W m�2 sr�1]
~E(~x) flux vector [W m�2]
f(~x) fluence [W m�2]
Q(~x) source function [W m�3]

Table 1: Nomenclature

is obtained by expanding the transport equation in spherical har-
monics, truncating the expansion at order N and imposing energy
conservation [Weinberg and Wigner 1958]. For steady-state prob-
lems with N = 1 this process produces the diffusion approximation.
Denoting the first two moments of the radiance as fluence f (which
is proportional to photon density) and flux vector ~E:

f(~x) =
Z

4p
L(~x,~w) dw, ~E(~x) =

Z

4p
L(~x,~w)~w dw,

the radiance everywhere within the medium is limited to

L(~x,~w) ⇡ 1
4p

f(~x) +
3

4p
~E(~x) ·~w. (2)

The fluence satisfies the diffusion equation
�D —2f(~x) + µaf(~x) = Q(~x) (3)

where Q is an isotropic source function and D is the diffusion coef-
ficient (defined below). In an infinite homogeneous medium with a
unit power isotropic point source the solution of Equation (3) is the
diffusion Green’s function

f(r) =
1

4pD
e�
p

µa
D r

r
, (4)

which forms the foundation of most practical analytic BSSRDFs.
Our investigation of the accuracy of Equation (4) for high absorp-
tion, near sources and for building decoupled single- and multiple-
scattering functions has led us to a modified diffusion theory that is
well suited to image synthesis.

For much of the remainder of the paper we treat the important case
of isotropic scattering (g = 0). A similarity relation is often used to
reduce a problem with anisotropic scattering to an approximately
equivalent isotropic problem with a reduced scattering coefficient
µ 0s = (1� g)µs and a related transport coefficient µ 0t = µa + µ 0s. We
discuss anisotropic scattering further in Section 10.

3.1 High Absorption and Near-Source Regimes

Several limitations of classical diffusion theory can be seen by con-
sidering a point source in an infinite homogeneous medium. The
solution in Equation (4) to the diffusion equation (3) distributes
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(a)
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Figure 3: Classical diffusion theory (dashed) poorly predicts pho-
ton density at small distances r from a point source in an infinite
medium (g = 0). The errors increase for high absorption levels
(b). Grosjean’s approximation (7) (black) closely matches the exact
transport solution, Equation (5) (dots).

the correct number of photons, but at incorrect distances from the
source. The error is greatest near the source where the true radiance
is nearly mono-directional. This phenomenon cannot be repre-
sented by Equation (2) and the result is a severe underestimation of
fluence very near the source and a somewhat lesser overestimation
at distances comparable to the mean free path (` = 1/µt ). Figure 3
compares the classical diffusion result to the exact transport theory
solution for isotropic scattering [Grosjean 1951; Case et al. 1953]4:

f(r) =
e�µt r

4pr2 +
µs

2p2r

Z •

0

arctan2 u
u� a arctan u

sin(r µt u) du. (5)

The classical diffusion solution is increasingly poor for high ab-
sorption levels (Figure 3b) because long scattering paths that arrive
back at low r values are heavily absorbed, preventing the radiance
from approaching a diffuse form. For all absorption levels the rela-
tive error decreases far from the source, but does not approach the
correct asymptote [Case and Zweifel 1967].

3.2 Diffusion Coefficient and Closure

A common entry point for improving the accuracy of diffusion the-
ory is to alter two of the somewhat arbitrary steps in its classical
derivation. Substituting a PN expansion of the radiance into the
transport equation (1) yields a term of order N + 1 and a closure
must be chosen to yield a closed system of equations. The standard
diffusion closure is Fick’s law

~E(~x) = �D —f(~x) (6)
which leads to Equation (3). Choosing an isotropic tensor-flux5

yields the classical diffusion coefficient Dcl = 1/(3µ 0t ). These

4 This integral is not absolutely convergent but can be transformed into a
form suitable for numerical integration [Grosjean and Goovaerts 1985].

5 An anisotropic tensor-flux can be used for anisotropic media [Jakob et al.
2010].

are natural choices for closure and diffusion coefficient and have
been rigorously derived from the transport equation through asymp-
totic analysis (along with boundary conditions that consider cur-
vature [Malvagi and Pomraning 1991]), but nonetheless they have
several limitations that have led to the development of entire fam-
ilies of modified diffusion theories and alternative diffusion coeffi-
cients [Minerbo 1978; Levermore and Pomraning 1981; Hauck and
McClarren 2010].

4 Modified Diffusion Theory

Methods for modifying diffusion theory have been studied for over
sixty years, even in an asymptotically-consistent fashion [Larsen
2010]. However, the classical form of diffusion theory remains
prevalent in the literature because no one modification is held to
be universally superior for all problems. We found the following
modifications useful for improving both previous diffusion models
found in graphics and our new BSSRDF.

4.1 Grosjean’s Approximation

A closed-form approximation from neutron transport [Grosjean
1956] for the fluence due to a point source in an infinite isotrop-
ically scattering medium is

f(r) =
e�µ 0t r

4pr2 +
1

4p
3µ 0sµ 0t

2µa + µ 0s

e�
p

µa
D r

r
(7)

where
D =

2µa + µ 0s
3(µa + µ 0s)2 . (8)

Figure 3 compares Grosjean’s approximation to exact transport and
classical diffusion results. The approximation is accurate for all
absorption levels and distances important for rendering. In our
investigations we found it more accurate than other proposed ap-
proximations as found for instance in [Weinberg and Wigner 1958;
Kim and Ishimaru 1998; Graaff and Rinzema 2001].

Equation (7) can immediately improve diffusion-based BSSRDFs
by noting that the second term is the Green’s function of a diffusion-
type equation [Grosjean 1958]:

�D —2f(~x) + µaf(~x) = a 0Q(~x) (9)
with a modified diffusion coefficient (8) and a source term weighted
by the reduced albedo a 0 = µ 0s/µ 0t . This suggests that adopting the
modified diffusion coefficient in Equation (8) and multiplying the
diffusion result by a 0 will provide a better description of the diffu-
sive light than that predicted by classical diffusion. The energy not
described by this modified diffusion solution, due to the first term in
Equation (7), is the ballistic fluence leaving the point source unscat-
tered. Later in the paper, as a beam of light enters a finite material
and a subsurface source is placed at the point of first scatter, this
ballistic fluence is precisely the single-scattered light leaving the
material. Thus, when used in a BSSRDF, Equation (7) provides an
accurate decoupling of singly- and multiply-scattered light. Much
of the error in classical diffusion theory stems from not decoupling
light in this way. The exact solution (5) and Grosjean’s result (7)
have a very similar shape and have identical zeroth moments, satis-
fying Z •

0
4pr2f(r)dr =

1
µa

. (10)

The classical diffusion result (4) attempts to encompass both ballis-
tic and scattered fluence by satisfying Equation (10) with a single
term that cannot describe the ballistic portion. Thus, adding single-
scattering to classical diffusion BSSRDFs (or neglecting it entirely)
leads to errors for absorbing materials (see Figure 4).
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Figure 4: Radiant emittance R(r) for a semi-infinite medium with a unit point source at a depth of 1 mfp (h = 1.4, µs = 1, g = 0). A diffusion
dipole with the modifications from Section 4 closely matches Monte Carlo reference (circles) when added to a ballistic fluence term (black).
The ballistic result is zero past the point where total internal reflection occurs. Using the classical diffusion Green’s function with (red) or
without (green) a ballistic term is less accurate. The errors in the infinite space solution (Figure 3) transfer directly to the semi-infinite case.
The unmodified dipole solution from [Jensen et al. 2001] combined with a ballstic term exhibits additional error (dashed).

4.2 Photon Diffusion Boundary Conditions

Applying diffusion theory to a medium with boundaries requires
appropriate boundary conditions. The non-physical boundary con-
ditions required by diffusion theory are typically derived in an
ad hoc fashion. However, asymptotically-consistent boundary
conditions for boundaries with Fresnel reflection have been de-
rived [Pomraning and Ganapol 1995]. The variational approxima-
tion to the linear-extrapolation distance zb given by this analysis is
zb = 2AD, with

A(h) =
1 + 3C2

1� 2C1
(11)

where Ci are hemispherical integrals of the Fresnel reflectance Fr,

Ci =
Z p/2

0
Fr(h, q) cosi(q)sin(q)dq . (12)

The reflection parameter A in Equation (11) improves upon previ-
ous solutions presented in graphics, which use only Fdr = 2C1 (see
Figure 5). The result in Equation (11) was used for photon diffusion
prior to its asymptotic derivation [Prahl 1988; Zhu et al. 1991]. We
refer the reader to [Pomraning and Ganapol 1995] for the complete
derivation, which considers a general BRDF applicable to rough
surfaces. Analytic solutions for C1 and C2 are presented in [Aron-
son 1995]. We found the following approximations useful in our
implementation

2C1 ⇡

8
>>>><

>>>>:

0.919317� 3.4793h + 6.75335h2 � 7.80989h3

+4.98554h4 � 1.36881h5, h < 1
�9.23372 + 22.2272h � 20.9292h2 + 10.2291h3

�2.54396h4 + 0.254913h5, h >= 1

3C2 ⇡

8
>>>><

>>>>:

0.828421� 2.62051h + 3.36231h2 � 1.95284h3

+0.236494h4 + 0.145787h5, h < 1
�1641.1 + 135.926

h3 � 656.175
h2 + 1376.53

h + 1213.67h

�568.556h2 + 164.798h3 � 27.0181h4 + 1.91826h5, h >= 1

4.3 The Method of Images

An efficient method of solving diffusion boundary conditions is the
method of images [Bryan 1890; Brinkworth 1964]. For the semi-
infinite or finite-slab searchlight problems the dipole or multipole
models approximately solve extrapolated boundary conditions by
placing negative image sources outside the medium for every pos-
itive source inside and can be regarded as an approximate appli-
cation of Placzek’s Lemma [Case et al. 1953]. The radiance at
the boundary is estimated by summing over all sources as if the
medium extended throughout space. Perhaps unintuitively, the neg-
ative sources increase the net flux leaving the material.

Figure 5: The total diffuse reflectance (albedo) as a function of
absorption µa/µs for an infinitely thick medium with g = 0, h = 1.5.
The albedo is overestimated by more than 5% with the classi-
cal Fresnel reflection parameter (using only Fdr) (dashed). Using
Eq. (11) (black) closely matches Monte Carlo (circles), producing
more accurate colors when rendering with measured parameters.

Solving a linear-extrapolation boundary condition exactly with
the method of images requires a complex configuration of nega-
tive sources [Bryan 1890]. As pointed out by Durian and Rud-
nick [1999], placing a single negative source such that the fluence is
zero at�zb is not an exact solution, especially for small r. However,
this simplification is convenient and equivalent to the exact solution
in the first two moments [Haskell et al. 1994]. We continue to adopt
this simplification and note that more accurate solutions are given
by Aronson [Aronson 1995] and Williams [Williams 2005].

4.3.1 The Searchlight Diffusion Source Function

Application of the method of images requires a point-source rep-
resentation of the searchlight beam as it enters the media. The
extended-source function [Grosjean 1958; Farrell et al. 1992] con-
siders the location of all first-scatter events for the reduced-intensity
beam as it passes through the medium. An isotropic point source is
placed at every depth z > 0

Q(z) = a 0µ 0t e�µ 0t z. (13)

Convolution of this extended-source function with the diffusion
Green’s function results in an integral with no closed form solu-
tion. A simpler model, which places all energy at a depth of exactly
one mfp, is accurate for large distances from the beam but intro-
duces considerable error near the beam and limits the application
of the multipole model to materials thicker than several mfps (Fig-
ure 6). Additionally, all incident illumination, possibly with high-
frequency variation due to surface detail or shadowing, is forced to
a depth of 1 mfp and scatters isotropically from that depth. This
light returns to the surface overly blurred and high frequency detail
is lost (Figure 1). These limitations are the motivation for including
an extended-source function in our BSSRDF.
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Figure 6: The classical multipole (left) breaks down for thin lay-
ers because the first positive source lands below the layer. The
extended multipole (right) mirrors continuous exponential sources
about extrapolated boundaries.

(a) (b)

Figure 7: (a) An extended-source diffusion model (dashed-red) has
considerable errors near the beam (r = 0) unless the KP exitance
calculation in (14) is used (black). Monte Carlo reference is shown
(dots) for comparison. Both diffusion solutions use Grosjean’s dif-
fusion equation (9) and add a single-scattering result. (b) Using the
k function from Donner and Jensen [2007] (dashed-red) improves
the standard extended-source model, but the improved exitance cal-
culation is consistently more accurate. Both plots show three ab-
sorption levels µa 2 {0.001, 0.05, 0.5}, with µs = 1, g = 0, h = 1.6.

4.3.2 Kienle-Patterson Exitance Calculation

Before deriving the new extended-source model we must revisit
the calculation of exitant flux at a surface. Given the positive
and negative source distributions for a given beam, previous meth-
ods [Jensen et al. 2001; Donner and Jensen 2005; Donner and
Jensen 2007] use Fick’s law (6):

R(r) = �D—f(r, z = 0) · (0, 0,�1)

where f(r) is the sum of the fluence from all sources. However, the
radiance at the boundary is better estimated by Equation (2) and a
more accurate result considers the Fresnel transmittance Ft(h, q) of
this radiance for all exitant directions [Kienle and Patterson 1997].
The total exitance is then a linear combination of both the fluence
and the flux at the surface:

R(r) = Cf f(r, z = 0) + C~E(�D—f(r, z = 0) · (0, 0,�1)) (14)

where Cf = 1
4 (1 � 2C1) and C~E = 1

2 (1 � 3C2). Equation (14)
significantly increases the accuracy of the method of images for
sources near the boundary and is essential for our application of
diffusion theory to thin materials. The extended source model is not
consistently more accurate than the 1 mfp model when using Fick’s
law for computing exitance [Farrell et al. 1992]. However, with
the Kienle-Patterson (KP) method the extended-source model is a
considerable improvement (Figure 7a). Donner and Jensen [2007]
improved the accuracy of near-surface sources with a k function,
but we found (14) consistently more accurate (Figure 7b).

5 A Practical Extended-Source Diffusion Model

Applying the extended source function (13) to a given Green’s func-
tion F(r) requires evaluation of integrals of the form

Z •

0
F(

p
r2 + z2) Q(z)dz =

Z •

0
F(

p
r2 + z2) a 0µ 0t e

�µ 0t zdz. (15)

When F is the diffusion Green’s function f (or its gradient) Equa-
tion (15) has no closed form solution and must be numerically inte-
grated for each distance of interest r from the point of illumination.
However, if F is the 3D-normalized Gaussian of variance v

G3D(v, r) =
1

(2pv)3/2 e�r2/(2v)

then (15) produces a planar surface Gaussian of the same variance
Z •

0
G3D(v,

p
r2 + z2)Q(z)dz =

1
2

µ 0s f (µ 02t v/2) G2D(v, r), (16)

where G2D(v, r) is the 2D-normalized Gaussian

G2D(v, r) =
1

2pv
e�r2/(2v),

and f (x) = ex erfc(
p

x) contains the complementary error function
erfc. A single evaluation of (16) provides an exact description of
the fluence everywhere on the surface due to an extended Gaus-
sian source. This avoids many expensive numerical integrations.
The application of this result requires a Gaussian Green’s function
or a finite Gaussian sum (exploiting linearity). The latter can be
achieved by temporally quantizing the diffusion Green’s function.

5.1 Quantized Diffusion

Particles or photons leaving a point source and undergoing dif-
fusion produce Gaussian distributions with a mean displacement
proportional to

p
tD where t is the time since emission and D is the

diffusion coefficient [Einstein 1905]. This is related to the steady-
state Green’s function (4) by integrating over contributions from all
emission times t in the past [Patterson et al. 1989]6

1
4pD

e�r
p

µa
D

r
=

Z •

0

c
(4pDct)3/2 e�µacte�r2/(4Dct)dt (17)

where c is the speed of light in the medium. Equation (17) has a
simple expression in terms of the normalized Gaussian

1
4pD

e�r
p

µa
D

r
=

Z •

0
e�tµa G3D(2Dt, r)dt (18)

where time t = ct is measured in meters. The distribution of pho-
tons at a time t from emission grows as a 3D Gaussian of variance
v = 2Dt centered at the source. At time t all photons have travelled
a distance t = ct so the entire Gaussian distribution is weighted by
an absorption of e�tµa . Noting that these time-resolved distributions
vary smoothly we build a discrete sum that closely approximates
their continuous integral.

We quantize the time interval t 2 [0, •] by selecting k + 1 discrete
time values ti with t0 = 0 and tk = •. We choose a weighted
Gaussian wi G3D(vi, r) to approximate the distribution of photons

6 In classical diffusion theory the integration for small time values is physi-
cally questionable for connecting the time-resolved and steady-state theo-
ries in this way [Pierrat et al. 2006]. We use the modified diffusion theory
of Grosjean [1956] (for the scattered light only) which was fit to an exact
transport solution. We require only the steady state result and (17) is used
only to provide the Gaussian transform of our Green’s function.
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in flight within each time interval [ti, ti+1]. This produces a finite
Gaussian expansion of the Green’s function

f(r) =
Z •

0
e�tµa G3D(2Dt, r)dt ⇡

k�1

Â
i=0

wi G3D(vi, r). (19)

The total absorption in the time interval [ti, ti+1] provides an accu-
rate choice for wi

wi =
Z ti+1

ti

e�tµa dt =
e�t1 µa � e�t2 µa

µa

and produces an expansion with a zeroth moment identical to that
of the exact diffusion solution, ensuring the correct number of pho-
tons are distributed around the source with only slight error in their
positioning. We found that choosing

ti = si�1t1 (20)

for s 2 [1.5, 2.0] produces an accurate and suitably sparse set of
Gaussians. The variances vi can be chosen using v = 2Dt by taking
the average shape of the Gaussian in the time interval:

vi = D(ti + ti+1).
Each successive Gaussian has a variance of s times the previous,
which ensures a close representative Gaussian exists for any time t.
Absorption produces very small weights wi for large time values,
allowing a simple termination condition for selecting tk�1. Very
small times also produce small weights and the scale of the problem
being considered can be used to select t1 (see Section 7.1).

The following quantization with s = (1 +
p

5)/2

f(r) ⇡
44

Â
i=0

0.240606
D

vmin si e�(vminsi µa/(2D)) G3D(vminsi, r) (21)

is accurate to within 0.002% of the exact value for
r 2 [5

p
vmin, 60000

p
vmin] over a wide range of albedos: for

a = 0.9999 (with vmin = 5 ⇥ 10�5/µ2
s ), for a = 0.5 (with

vmin = 5⇥ 10�9/µ2
s ), and for a = 0.1 (with vmin = 10�10/µ2

s ).

5.2 The Extended Multipole Model

A generalization of Equation (16) together with Equation (19) al-
lows a new extended-multipole model for computing reflectance
R+/�(r) and transmittance T +/�(r) profiles7 for a finite material
layer of thickness d. To compute exitance using the method of
images and the KP exitance calculation (14), we require the total
fluence and flux at depth z = 0, for R, and depth z = d, for T .
The extended source function (13) creates an exponential distri-
bution of primary sources inside the layer. Solving the boundary
conditions using a multipole expansion mirrors these exponential
distributions about the extrapolated boundaries (Figure 6). The ex-
trapolation distances are based on the relative index of refraction
at the top htop and bottom hbottom of the layer, zb(0) = 2A(htop)D,
zb(d) = 2A(hbottom)D. An order-n multipole expansion places an ar-
ray of positive and negative sources offset from the primary sources
by the following offsets [Donner and Jensen 2005]

mr, j = 2 j(d + zb(0) + zb(d))
mv, j = 2 j(d + zb(0) + zb(d))� 2zb(0)

where j 2 {�n, n} indexes each pair of positive (r) and negative (v)
sources. Each source in this distribution produces fluence in the ma-
terial using Grosjean’s approximation (7). The ballistic term pro-
duces single-scattered light, which is accounted for separately. The
remaining diffusion term employs a finite Gaussian expansion (19).

7 We compute direction-dependent profiles R+/�(r) and T +/�(r) using the
notation of [d’Eon et al. 2007]. The (+) and (�) profiles are not the same
in general (and this is not a violation of reciprocity [Aronson 1997]).

Each Gaussian in this expansion produces planar Gaussian fluence
and flux distributions at every depth z in the material. The gener-
alization of Equation (16) for a finite layer with a Gaussian source
offset a distance m from the primary source is a lateral 2D Gaussian
with fluence weight wf ,

Z z2

z1

Q(z)G3D(v,
p

r2 + (z + m)2)dz = G2D(v, r)wf (v, z1, z2, m),

wf (v, z1, z2, m) =
Z z2

z1

e�
(�z+m)2

2v
p

2pv
a 0µte�µt zdz =

a 0µt

2
em µt +

µ2
t v
2

✓
erf


m + µt v + z2p

2v

�
� erf


m + µt v + z1p

2v

�◆
.

The surface flux is also a Gaussian of variance vi with weight w~E
related to wf . Using Fick’s law (6) and some manipulation yields

w~E(v, z1, z2, m) = Dµt


�wf (v, z1, z2, m)

+
a 0

✓
e�

m2
2v �

(m+µt v)z1
v � z2

1
2v � e�

m2
2v �

(m+µt v)z2
v � z2

2
2v

◆

p
2pv

�
.

For each pair of sources j the dipole reflectance fluence and flux
weights, wfR and w~ER, are

wfR(v, j) = wf (v, 0, d, mr, j)� wf (v, 0, d,�mv, j)
w~ER(v, j) = w~E(v, 0, d, mr, j) + w~E(v, 0, d,�mv, j)

and the total reflectance weight wR(i) for Gaussian i is found by
summing over all dipoles j in the multipole expansion and using
the KP exitance calculation

wR(i) =
n

Â
j=�n


Cf (htop)wfR(vi, j) + C~E(htop)w~ER(vi, j)

�
.

Summing contributions from all Gaussians i in the Green’s function
expansion and weighting the result by a 0 (see Section 4.1) produces
the downward reflectance profile

R+(r) = a 0
k�1

Â
i=0

wR(i) wiG2D(vi, r). (22)

The downward transmittance profile T +(r) is similar:
wfT (v, j) = wf (v, 0, d,�(d � mr, j))� wf (v, 0, d, d � mv, j)
w~ET (v, j) = �w~E(v, 0, d,�(d � mr, j))� w~E(v, 0, d, d � mv, j),

wT (i) =
n

Â
j=�n


Cf (hbottom)wfT (vi, j) + C~E(hbottom)w~ET (vi, j)

�

T +(r) = a 0
k�1

Â
i=0

wT (i) wiG2D(vi, r)

The upward profiles R�(r) and T�(r) result from computing the
respective downward profiles with htop and hbottom swapped. Semi-
infinite materials use Equation (22) with n = 0 and d = •.

5.3 Multilayer Materials

Multiple scattering within layered materials can be computed by
applying glass plates theory [Peraiah 2002] to lateral diffusion pro-
files, as shown by Donner and Jensen [2005; 2006]. Given QD
profiles R+/�(r) and T +/�(r) for each layer, which are each sums
of Gaussians, we compute reflectance and transmittance profiles for
pairs of layers using a finite-order interlayer-scattering expansion
similar to d’Eon et al. [2007]. We use a new convolution algo-
rithm that does not require profiles with all integer powers of some
narrowest variance (requiring 1000 Gaussians or more per profile).

7
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@Liemert and Kienle 2010D
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Figure 8: Reflectance R12(r) from a 2-layer material. The top
layer is 2 mfp thick with: µa1 = 0.2 mm�1, µs1 = 1 mm�1, g1 =
0, h1 = 1.4. The bottom layer is semi-infinite with µa2 =
0.001 mm�1, µs2 = 0.5 mm�1, g2 = 0, h2 = 1.4. The Quantized-
Diffusion result added to single-scattering (black) closely matches
Monte Carlo (dots). One-depth source models [Donner and Jensen
2005; Liemert and Kienle 2010] are frequency-limited due to errors
near the beam. The diffuse reflectance for the top layer only R+

1 is
shown for comparison.

The new algorithm (presented in Appendix A) takes as input two
profiles relative to a common geometric sequence of Gaussians
(constructed via Equation (21) with potentially 60 or more Gaus-
sians) and provides an accurate result in terms of the same set of
variances as the input profiles. This convolution operation is faster
than previous methods and avoids the need for fast Fourier/Hankel
routines and high radial resolutions (5000 radial samples are rec-
ommended by Donner and Jensen [2006]). In addition, there are
no ringing artifacts and the albedo of the convolved profile is the
product of the input profile albedos, providing exact energy con-
servation. For thin layers, a significant portion of the transmitted
energy is unscattered, attenuated light passing directly through the
layer. To incorporate this transmission in the otherwise diffusive
interlayer scattering we add an additional Gaussian of zero variance
to T (r) profiles, (1 � ( htop�1

htop+1 )2)(1 � ( hbottom�1
hbottom+1 )2)e�dµ 0t G2D(0, r). A

similar Gaussian added to R(r) profiles, ( htop�1
htop+1 )2G2D(0, r) roughly

accounts for Fresnel reflection during interlayer-scattering.

6 Validation

We compared QD profiles to Monte Carlo simulations for re-
flectance and transmittance within homogeneous layers. We chose
16 absorption levels µa between 0.0001 and 10.0 and 9 layer thick-
nesses d from 0.02 mfp to 10.0 mfp with g = 0, htop = hbottom =
1.4, µs = 1 and tested all combinations. A representative sub-
set is shown in Figure 9 using a quantization with 40 Gaussians
(s = 1.618). All Monte Carlo simulations used MCML [Wang et al.
1995]—an open source benchmark tool in medical physics. While
not perfect matches, the QD solutions exhibit accurate behaviour at
scales several orders of magnitude smaller than that for which they
are typically applied. In the case of very thin materials, the scale of
the plots are chosen to highlight the multiple scattering, with most
of the energy directly transmitted through the material unscattered
(appearing as a sharp peak near the beam). The QD results are
globally more accurate than the classical multipole model.

Figure 8 shows a two-layer material profile computed with QD us-
ing the fast convolution algorithm with 60-Gaussian profiles and
four interlayer scatterings. We compare to two recent methods
for computing spatially-resolved multilayer profiles [Donner and
Jensen 2005; Liemert and Kienle 2010], which both use 1-mfp
source diffusion models and both result in frequency limited multi-
layer profiles due to errors near the beam.

7 Rendering with the QD BSSRDF

Exitant radiance at a surface location~xo in direction ~wo is computed
by convolving the incident radiance Li(xi, ~wi) with a BSSRDF S:

Lo(xo,~wo) =
Z

A

Z

2p
S(xi, ~wi; xo, ~wo)Li(xi, ~wi)(~n · ~wi) dwi dA(xi).

Following Grosjean [1958], we separate light into reduced-
intensity, single-scattering, and multiple-scattering components,
each treated separately,

S = S(0) + S(1) + Sd .

Reduced-intensity transmission S(0) can be computed using stan-
dard transparency algorithms with depth dependent spectral absorp-
tion (e�dµt ). Single scattering S(1) can be computed using previous
methods such as the technique described in [Jensen et al. 2001].
Multiple scattering uses the QD model

Sd (xi, ~wi; xo, ~wo) =
1
p

Ft(xi, ~wi)R(||xi � xo||2)
Ft(xo, ~wo)
4Cf (1/h)

, (23)

where R is a sum of Gaussians computed with (22) for single-
layered materials or from combinations of R and T profiles for mul-
tilayered materials (Appendix A). Equation (23) adds an additional
normalization factor to the factorization of Jensen et al. [2001]: the
diffusion profiles R+/� and T +/� provide the exitant scalar flux
at material boundaries due to multiple scattering. The portion of
light just below the surface that is reflected back into the medium
is accounted for in solving the diffusion boundary conditions. The
remaining flux leaving the surface is the value computed by Equa-
tion (22) and any heuristic used to estimate its angular shape should
not remove or add energy. To use the angular shape 1

p Ft(xo, ~wo)
proposed by Jensen et al. [2001] we add the normalization fac-
tor 4Cf (1/h). More accurate exitant angular distributions can be
computed as shown by Williams [2005]. Rough surfaces can be
accounted for by replacing the Fresnel functions in Equations (12)
and (23) with analogous integrals of the surface BRDF [Donner and
Jensen 2005].

7.1 Choosing Quantizations

The general method described in Section 5.1 generates an infi-
nite sequence of Gaussians. However, most of these have negli-
gible weights when used to generate the surface diffusion profiles
R+/�(r) and T +/�(r). With s = 1.618, 42 Gaussians are sufficient
to account for 99.5% of the reflected energy for materials with a
diffuse albedo less than 0.997. Fewer Gaussians can be used by
increasing s, at the expense of some error in the profile shape. The
weights wi peak near v ⇡ 2D/µa and decreases monotonically for
smaller and larger v. Depending on the scale of the object, ma-
terial parameters, and resolution of the image, many Gaussians in
the quantization will likely not move measurable energy into neigh-
bouring pixels. All such narrow Gaussians can be approximated by
a single one with a weight equal to the sum of all narrower Gaus-
sian weights. As an object moves farther away in an image, more
and more energy is represented by this narrowest Gaussian until the
entire function is effectively local and evaluates like a bidirectional
reflectance distribution function (BRDF).

7.2 Film Production Rendering

We implemented our QD BSSRDF for use in a visual effects
pipeline using Photo-Realistic RenderMan (PRMan) extending the
hierarchical irradiance point cloud algorithm of Jensen and Buh-
ler [2002] in several ways. QD BSSRDF profiles are more expen-
sive to evaluate, requiring up to 40 exponentials instead of the two
of the dipole. However, the radial symmetry of the profiles can

8
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Figure 9: Single layer Reflectance R(r) and Transmittance T (r) profiles for various thicknesses. Each plot shows four absorption levels
µa 2 {0.0001, 0.1, 0.5, 5.0} with µs = 1, g = 0, htop = hbottom = 1.4. The red curves show the classical multipole [Donner and Jensen 2005]
with single-scattering added. Even for optically thick layers (left) there is significant error near the beam due to the 1 mfp source model. Our
QD extended-multipole model with single-scattering added (black) closely matches Monte Carlo simulation (dots) even for extremely thin
slabs (right). The classical transmittance multipole goes highly negative for thin slabs do to the ill-behaved source placements (see Figure 6).

be used to share many expensive calculations. The point cloud is
stored in an octree and traversed for each render point as described
in Jensen and Buhler [2002]. As each node in the octree is visited
at render time, the irradiance is accumulated into a small 1D radial
binning data structure instead of immediately evaluating the BSS-
RDF. After the energy from all octree nodes has been stored in the
radial bins, the BSSRDF is analytically integrated over the width
[rk, rk+1] of each bin and multiplied by the total bin energy Ebin.
Many nodes in the point cloud, all at distances within [rk, rk+1] from
the render point, share a single BSSRDF evaluation

R rk+1
rk

R(r)dr.
The radial bin is then cleared for the next render point. We found 70
bins with a spacing of rk = r1 + r1k1.1k sufficient for very smooth
results. After all nodes have been accumulated the contribution
from each bin k and for each Gaussian i in the BSSRDF is

Ebin[k]
p(r2

k+1 � r2
k )

Z rk+1

rk

2prG2D(vi, r)dr =
⇣

e�r2
k /(2vi) � e�r2

k+1/(2vi)
⌘�

.

The analytic convolution of the profile over each bin shares ex-
ponential evaluations with neighbouring bins, providing a higher
quality result while costing no more than the discrete evaluation
proposed in [Jensen and Buhler 2002]. The use of analytic con-
volution reduces undersampling artifacts typical of narrow profiles,
already reported in literature and for which a number of partial solu-
tions have been proposed (see for example [Langlands and Mertens
2007] or [Neulander 2009]). The areas of each bin and all the ex-
ponentials can be computed once and reused for many calculations
even if the profile changes, provided the set of variances remains
the same, which can be enforced in the quantization of the profile.

For heterogeneous materials we store a weighted average of the
values µa and µ 0s in the same radial binning structure. Each bin con-
tribution averages material properties from radius 0 to radius rk+1
and updates the profile before integrating. All energy arriving from
radius rk considers the material properties between it and the render
point instead of just properties at either 0 or rk. Profile updates are
quickly performed for arbitrary changes in µ 0s by a linear scaling
of the variances. Small relative changes (< 1%) in µa allow fast
approximate updates by a simple rescaling of the Gaussian weights
to sum to the new diffuse color Rd .

The octree method is further accelerated by noting that far away

nodes contribute nearly identical results to nearby render points. As
our implementation runs inside PRMan, it is already provided with
batches of nearby points to be shaded at once, known as micropoly-
gon grids. It is then quite natural to store these points into a small,
local acceleration structure and use it to share contributions from far
away nodes. This is similar to doubly-adaptive traversal strategies
used in particle simulation [Greengard and Rokhlin 1997].

8 Discussion

Our QD BSSRDF generates sum-of-Gaussians scattering profiles
which have several advantages over other BSSRDF representations:

• Convolving irradiance with a sum-of-Gaussians BSSRDF can
be performed hierarchically and separably as in [d’Eon et al.
2007; Donner et al. 2008], where the profiles were generated
using nonlinear optimization and empirical fitting. Our QD
BSSRDF provides physical justification for these profiles and
generates more accurate profiles orders of magnitude faster.

• Scattering properties of real materials have been measured us-
ing laser beam [Jensen et al. 2001] and structured light [Tariq
et al. 2006] illuminations. A sum-of-Gaussians BSSRDF has a
trivial convolution with Gaussian-beam and half-plane source
functions making them ideal sources for estimating material
parameters with our model. The basis is also well suited for
capturing RGB profiles directly, which are the combination of
many different pure-frequency profiles and often not well repre-
sented by any single set of scattering parameters (for example,
skin). Precomputation and tabulation of profiles is efficient and
compact.

• A wealth of exact transport and diffusion solutions are known
only in Fourier space including all of the exact searchlight
solutions from [Elliott 1955] to [Williams 2009]. A sum-
of-Gaussians representation transforms trivially to and from
Fourier space with no Gibbs phenomenon or precision issues
and linearity of the Fourier transform permits fitting Gaussians
to exact solutions in Fourier space, avoiding the limitations of
traditional Fourier inversion.
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Figure 10: Illumination of semi-infinite material with normally-
incident, collimated, high-frequency white light. Different simu-
lations are shown side by side with the vertical stripe illumination
shown in between each image for comparison. The multiple scatter-
ing predicted by our QD model contains high-frequency details that
the classical dipole model lacks. When added to single-scattering,
the QD model closely matches the appearance of the Monte Carlo
reference simulation. The QD model has more accurate, saturated
colors than the dipole due to Grosjean’s improved diffusion equa-
tion.

Figure 11: Anisotropic Scattering: Our QD model (black)
is less precise for media with anisotropic scattering, but much
closer to Monte Carlo simulation (dots) than the classical dif-
fusion dipole (dashed-red). Three absorption levels are shown
µa/µ 0s 2 {0.001, 0.05, 0.5}, with g = 0.95, h = 1.6.

9 Results

Figure 1 shows a comparison of single-layer BSSRDFs applied
to skin. While skin is a multilayer material, measured multilayer
parameters and difficult to acquire and unintuitive to edit. We
found that it is possible to achieve very realistic results with our
QD BSSRDF even for single-layer skin with parameters derived
from painted maps of the albedo and scattering coefficient. The
accurate profile shape for small radii keeps subtle detail that is lost
by the dipole model. Figure 10 further illustrates the differences
in frequency content and colours predicted by our model vs. the
classical dipole model, showing reflectance from a homogeneous
material with g = 0, µa = {0.02, 0.05, 0.1}, µs = 1, h = 1.5. Fig-
ure 12 (bottom-left) shows a PRMan render of a liquid animation
using measured scattering properties of cream [Jensen et al. 2001]
applied. The render time on a 6-CPU Xeon 2.66 GHz machine was
31 minutes per frame with 625 million profile evaluations from 9
million irradiance points with 45-Gaussian QD profiles. Compar-
ison time for an optimized implementation of [Jensen and Buhler
2002] of the same scene was 15 minutes per frame. Figure 12
(bottom-right) shows further liquid animation results using milk
parameters under area light illumination. Figure 12 (top) shows
an application of the QD model to a textured alien. A deep translu-
cence is achieved with a single-layer material model, keeping fine
details that are lost with the dipole model at the same translucency.
The radially-averaged texturing produces a complex heterogeneous
appearance.

10 Limitations and Future Work

Grosjean’s Green’s function (7) fits an exact solution for isotropic
scattering and is not exact for anisotropic scattering. While not
as accurate as the profiles for isotropic scattering, anisotropic QD
profiles using (7) are more accurate than previous analytic BSS-
RDFs (Figure 11). More accurate Green’s functions for anisotropic
scattering often include multiple occurrences of the basic diffusion
Green’s function (4), such as Grosjean’s extension of his 1956 re-
sult to linear-anisotropic scattering [Grosjean 1957], infinite plane-
wave expansions [Liemert and Kienle 2011], and simplified PN
methods [Larsen 2010]. Our quantized-diffusion methods can ap-
ply to these Green’s functions via Equation (19). Possible exten-
sions to angular sources include the methods of Williams [1978]
and d � PN theory [Carp et al. 2004]. The Fokker-Planck approx-
imation for highly forward scattering media also includes Gaus-
sians [Pomraning 2000] and might offer extension of the ideas of
QD to such materials.

The computation of multilayer profiles is limited by the methods
in [Donner and Jensen 2005]—the multiply-scattered transmitted
flux hitting the next layer does not arrive like a collimated beam, but
as a diffuse surface source. Improving upon this requires a multi-
flux version of [Donner and Jensen 2005], including an expansion
of single-scattering within slabs in terms of Gaussians and a model
for diffuse surface sources.

Our diffusion quantization provides a separation of the flux leaving
the surface into Gaussian photon packets that have travelled differ-
ent distances through the material. An area for future work is the
use of this separation for building multiscale scattering functions
where each Gaussian photon packet considers a different local aver-
age of material properties, surface normal and curvature for solving
multiscale boundary conditions. This may further extend the ac-
curacy of diffusion solutions within heterogeneous, curved media.
Similarly, a sum of elliptically warped Gaussians could easily rep-
resent the stretched profiles seen in anisotropic media [Jakob et al.
2010] and describe the contrary stretching directions observed in
the near and far field regimes [Kienle 2007]. These stretched Gaus-
sians are seen in the time-resolved Green’s function for anisotropic
media [Dudko and Weiss 2005], which could also be quantized.

11 Conclusion

We have presented a new reflectance model for layered translucent
materials. Our model builds on previous diffusion BSSRDFs with
both a modified diffusion framework and a novel evaluation of the
extended source function in a material layer. We have demon-
strated significant impact of these changes in the colors of materials
rendered with measured parameters, in the bleeding of light near
high frequency features such as shadow edges, in the division of
reflected light into single and multiple scattered components, and
in the application of diffusion theory to very thin materials. Our
model produces surface scattering functions in terms of Gaussian
sums that have many advantages over alternate representations. We
validated our model by comparing to exact transport solutions and
benchmark Monte Carlo simulations. Our model is practical and
currently in use at a major visual effects studio.
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A Fast sum-of-Gaussians Radial Convolution

Pseudo-code for an O(N) 2D radial convolution algorithm for two sum-of-Gaussians
radially-symmetric functions. To approximate the convolution of two Gaussians
aiG2D(vi, r) and b jG2D(v j , r), we find k s.t. vk  vi + v j  vk+1 and distribute weight
aib j between the vk and vk+1 Gaussians via

wk+1 = aib j
vi + v j � vk

vk+1 � vk
wk = aib j � wk+1

If vi = siv0 and s � (1 +
p

5)/2 ⇡ 1.618 all pairs (ai, b j) with j < i fall between vi

and vi+1, and can be computed all at once via

wi+1 =
ai

vi+1 � vi
Â
j<i

b jv j wi = ai Â
j<i

b j � wi+1

Precomputing the sums for all i yields an O(n) algorithm:

// Assumes a[i] and b[i] are the weights for 2D normalized Gaussians with variances v[i]

// It is further assumed that v[i+1] = s * v[i], where s is the golden ratio

c[] fastconvolve( a[], b[], v[] )

{

s = ( 1 + sqrt(5) ) / 2;

oneoverr = 1 / s

oneoverrm1 = oneoverr / ( s - 1 )

N = length( v )

c = zeros( N )

suma = sumav = sumb = sumbv = 0

// contribute from all off-diagonal pairs

for( k = 0; k < N - 1; k++ )

chi = a[k] * sumbv + b[k] * sumav

c[k+1] = chi

c[k] += a[k] * sumb + b[k] * suma - chi

suma += a[k]

sumb += b[k]

sumav = oneoverr * sumav + oneoverrm1 * a[k]

sumbv = oneoverr * sumbv + oneoverrm1 * b[k]

// contribute from diagonal pairs

alpha = ( 2 - s ) / ( s * s - s )

for( k = 0; k < N - 2; k++ )

ckk = a[k] * b[k]

c[k+2] += alpha * ckk

c[k+1] += ( 1 - alpha ) * ckk

return c

}

The resulting profile ciG2D(vi, r) shares the same set of Gaussians as the input profiles,
allowing easy profile addition. The downward reflectance and transmittance profiles
R+

12 and T +
12 for a two-layer material are computed using:

R+
12 = R+

1 + T +
1 ⇤ R+

2 ⇤ T�
1 ⇤

K

Â
i=0

(R�1 ⇤ R+
2 )i

T +
12 = T +

1 ⇤ T +
2 ⇤

K

Â
i=0

(R�1 ⇤ R+
2 )i

where the number of interlayer scattering events K is not likely required to exceed
5 [d’Eon et al. 2007; Donner et al. 2008].
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