M&C 2023 - The International Conference on Mathematics and Computational Methods Applied
to Nuclear Science and Engineering - Niagara Falls, Ontario, Canada - August 13 — 17, 2023

High-Precision Benchmarks for the Stochastic Rod

Eugene d’Eon', Anil Prinja®

INVIDIA
2788 San Tomas Expressway, Santa Clara, CA 95050

2University of New Mexico
Department of Nuclear Engineering, Albuquerque, NM 87131

edeon@nvidia.com, prinja@unm.edu

ABSTRACT

We demonstrate a method to calculate high-precision benchmarks for the reflectance and trans-
mittance of a finite rod with a stochastic cross section, assuming that the attenuation law has a
known closed form and both the single-scattering albedo and scattering kernel are determinis-
tic. We introduce new 10-digit values for an existing binary-Markov benchmark (including mean
and variance), along with several new benchmarks defined for non-Markov binary mixtures and a
continuous fluctuation model featuring gamma stationary statistics. Furthermore, we reveal that
our analysis of scattering in the stochastic rod results in an efficient algorithm for identifying the
parameters of an n-ary Markov mixture that most accurately approximates a given non-Markov
system.
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1. INTRODUCTION

Stochastic descriptions of radiation transport in media exhibiting complex spatial material property varia-
tion are widely employed in applications such as inertial confinement fusion, advanced nuclear reactors, and
computer graphics to name a few [1]. Deterministic transport on a highly heterogeneous material domain is
modeled by a transport equation with spatially random interaction cross-sections and the problem reduces
to one of creating realizations of stochastic geometry, solving the transport equation on an ensemble of
realizations, and post-processing the results to obtain quantities of interest, such as the mean radiation re-
flectance and transmittance as well as the interior flux [2]. Although expensive to generate, these solutions
provide important benchmarks against which to measure the accuracy of efficient approximate models of
non-classical transport. Deterministic results, where possible, permit a more efficient and accurate explo-
ration of stochastic transport and can lead to additional insights. However, such results have been limited
to purely-absorbing systems or one-dimensional, semi-infinite systems with deterministic single-scattering
albedo [3,4].

In this paper, we present a new exact analytic transport result for steady-state monoenergetic transport in
a stochastic finite 1-D rod with scattering, provided the single-scattering albedo and scattering kernel are
both deterministic and homogeneous. In particular, we solve the albedo problem for the finite rod and
show that the ensemble-averaged reflectance R and transmittance 7' of a finite rod follows directly from the
attenuation law of the system. We further extend the approach to compute the variances of R and T'. Our
approach is numerically stable and efficient, bypassing direct use of the density of optical depths. We use it
to present the first, to our knowledge, deterministic confirmation of the ALP rod benchmarks [2], which we
give to 10 places.

Our method applies to any system where the attenuation law is known exactly, and we also give results for
n-ary Markov mixtures, non-Markov binary mixtures and systems with transformed Gaussian fluctuations.
The result also inspires new methods for determining parameters of an n-ary Markov mixture that best
approximates the full transport in a non-Markov system, and we share some promising results of approxi-
mating transport in media with continuous density fluctuations using n-ary Markov approximations.
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2. STOCHASTIC TRANSPORT IN A FINITE ROD

We consider transport in a simplified one-dimensional “rod” model where transport is restricted to flow left
and right along the 2 axis. Collisions are governed by a total macroscopic cross section X(z) and scattering
is characterized using a “mean cosine” —1 < g < 1, where (1 + g)/2 is the probability that the scattered
direction is the same as the incoming direction. The single-scattering albedo 0 < ¢ < 1 is assumed constant.
The angular fluxes in such a source-free system satisfy [5]
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For the albedo problem, we assume an inward, unit, deterministic source at x = 0 and seek the reflectance
(R) and transmittance (T) for the rod of length a (where z € [0, a]). For a realization with deterministic
Y (x), the albedos are [5]
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where k = /(1 — ¢)(1 — ¢g) is a diffusion constant and
T(z) = / ¥ (2') da’ 4)
0
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is the optical depth at position = from the left boundary.

For the stochastic case, we consider stationary fluctuations of 3(z), and seek ensemble averages of the
albedos (R(a)), (I'(a)). If the density of optical depths f,(7) of the rod of length a is known, then the
averages follow directly from the deterministic solutions [3], where the only stochastic quantity is 7, for
example
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However, in practice, f,(7) is often not known in closed form (excluding the case of non-physical Gaussian
fluctuations) and the required integrals are likely intractable. However, the related Laplace transform

Ty(z) = (e7@%) s>0, (6)

is known in closed form for many fluctuation models, as this is simply the attenuation law in the purely
absorbing rod where the extinction field () is scaled by a constant s. While the density of optical depths
follows from Equation 6, it involves a numerically-problematic inverse transform, so instead we seek to
transform the deterministic albedos into a form where we can apply Equation 6 directly. We demonstrate
this next, treating the absorbing and non-absorbing cases separately.

2.1. No Absorption

For the lossless finite rod (¢ = 1), the deterministic reflectance R(a) and transmittance 7'(a) in a given
realization are [5]

R(a) =1-"T(a), (7
2
T(a) = 8
R () ®
If we write Equation 8 as a Laplace integral,

T(a) = —2— [ eed )

a) = —— es-1e s.
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then we have

(T(0) = T / / e e (1) ds dr (10)

= 2 | eFiTy(a)ds, 11
1_90 (a) (11)

using Equation 6, assuming we can swap the integration order. This is convenient as a numerical method,
as it avoids numerical issues inverting T(z) to find f,.

2.2. With Absorption

For the absorbing rod, we observe that the deterministic albedos (Equations 2 and 3) can be transformed
into a sum of exponentials of the optical depth. Applying the appropriate trig expansions, multiplying top
and bottom by e~ 7@ and expanding the geometric series, we can write

_ (1 — /3)6(1 — g) = n [ —2nk7(a) —2(n+1)xr7(a)
R(a) = 0% n§:06 (e —e ). (12)
> _ —24c+cg+2k
T —(1— n ,—k(2n+1)7(a) = ) 1
@=01-5)3 e et (13)

We can now ensemble average these albedos directly using Equation 6 to produce an infinite sum of scaled
transmission laws

(R(a)) = =52 (Tane(0) ~ i) (14)

(T(a) Z B"T140m) (@), (15)

which we find to converge rapidly in practice and amenable to high-precision benchmark computation.

2.2.1. Variances

The same approach can be used to compute the variances of R and T'. Using a similar expansion of the
squares of Egs.(7-8), followed by ensemble averaging, we find

_ 202 2
var(R) = U 5)16/{(21 9) 1+Z 18" 2(8 + Bn— n + DTome(a) | — (R(a))2,  (16)
Var(T) = (1= 8)* Y 8" 'nTanu(a) — (T(a))’. (17)
n=0

Extending this approach to higher-order moments is straightforward.

3. DISCRETE MIXTURES

Discrete fluctuations, where ¥(x) takes on one of n values ¥;,j = 1,2,...n, at any position x, form
a useful class of stochastic media [6]. Laser light transport in mixed zones in Rayleigh-Taylor unstable
interface regions in inertial confinement fusion pellets and solar radiation transport in atmospheres with
clouds are notable applications where two or more immiscible fluids manifest as discrete stochastic mate-
rial mixtures. Monte Carlo and deterministic numerical benchmark solutions have been developed for 1D
alternating slabs with Markovian mixing statistics, i.e., exponentially distributed chord lengths in the two
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Case | a (R(a)) ALP (R) | Var(R) (T(a)) ALP (T) | Var(T)

1 0.1 | 0.0336085547 | 0.0332 | 0.0051070843 || 0.9567341180 | 0.9572 | 0.0087422019
1.0 || 0.2120602879 | 0.2121 | 0.0251034404 || 0.7017300622 | 0.7017 | 0.0592783333
10.0 || 0.5146120962 | 0.5146 | 0.0001554905 || 0.0558841381 | 0.0557 | 0.0039173836

2 0.1 | 0.0311855790 | 0.0310 | 0.0061086706 || 0.9592533739 | 0.9595 | 0.0106827605
1.0 || 0.1171004102 | 0.1173 | 0.0263761356 || 0.8198111270 | 0.8194 | 0.0817529106
10.0 || 0.4298316332 | 0.4301 | 0.0113727340 || 0.2663732364 | 0.2658 | 0.0744737180

3 0.1 | 0.0406033351 | 0.0407 | 0.0015544326 || 0.9494962649 | 0.9494 | 0.0024073095
1.0 || 0.2150813235 | 0.2157 | 0.0342908636 || 0.6957070903 | 0.6948 | 0.0707881374
10.0 || 0.4689446932 | 0.4688 | 0.0146380875 || 0.1510863382 | 0.1510 | 0.0654108812

Table 1: Exact ALP benchmark values for the ¢ = 0.9 configurations (original MC values included
for comparison).

materials, and used to assess the accuracy of approximate closure-based homogenized transport models, the
most prominent being the Levermore-Pomraning (LP) model. More recently, this work has been extended
to an arbitrary number of materials, so-called n-ary Markov mixtures [7], and multi-dimensions [8]. Below
we present high-precision analytical benchmark solutions in the rod geometry setting for binary mixtures
with both Markov and non-Markov statistics, and later use n-ary Markov mixtures to approximate non-
Markov systems.

3.1. Markov Mixtures

For n-ary Markov mixtures, the required Laplace transform T(z) is always a sum of n exponentials and
can be compactly expressed as a matrix exponential [9, Eqs.(20,21)]

Ts(x) = wel@—s5)7y (18)

where S is a diagonal matrix with the cross sections X ; in each phase, (@ is the infinitesimal generator for the
n-state continuous-time Markov chain that determines the chord lengths in each phase (along a transect),
1 = (1,1,---,1)7, and 7 is the equilibrium distribution of initial phases (volume fractions occupied
by phase j). For the well-studied case of binary Markov mixtures, 77 (x) is the Levermore-Pomraning
attenuation law.

Since the general attenuation in Eq.(18) can be computed to arbitrary precision, we can efficiently compute
high-precision benchmarks for scattering in the stochastic rod using the methods derived in Section 2. It is
interesting to note that, since Ts(x) is always a sum of n exponentials, the albedos R and T are therefore
exactly represented as a countable sum of exponentials for any n-ary Markov system.

We now give several benchmark results for binary mixtures. In Table 1, we give exact benchmark values for
the ¢ = 0.9 configuration of the ALP benchmarks [2], which were originally determined using the double-
Monte-Carlo approach. We were quickly able to achieve 10-point accuracy, and also extend the benchmark
by including exact variances.

3.2. Non-Markov Binary Mixtures

The required attenuation law for a non-Markov binary mixture where the chord lengths along a transect
are given by an alternating renewal process is known in terms of its Laplace transform. We noted three
independent derivations of this result in the literature [10-12], which we verified to be equivalent. For
Erlang-distributed chord-length distributions, and other simple models, T can be inverted and new high
precision benchmarks can be computed using our method.

We propose a new benchmark for a non-Markovian binary rod with deterministic albedo ¢ = 0.9 and
isotropic scattering ¢ = 0. We chose Erlang chord lengths with densities p;(x) = e *z in phase 1 and
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a (R(a)) Var(R) (T(a)) Var(T)

0.1 | 0.0399669216 | 0.0019874411 | 0.9501496532 || 0.0031035130
10 | 0.2140827329 | 0.0306370583 | 0.6974850029 || 0.0666697986
10.0 || 0.5146520340 | 0.0002016091 | 0.0542852987 | 0.0040831262

Table 2: Mean and variance of the rod albedos for our non-Markov binary benchmark.
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Figure 1: Comparison of our non-Markov binary rod benchmark (continuous) to the ALP-Case-1
Markov benchmark (dots) as a function of rod length. Despite a close agreement of the mean
albedos (left) over a range of rod lengths a, the non-Markov mixing statistics lead to a higher

variance system for most rod lengths (right).

pa(x) = %e‘4$/3x3 in phase 2. We assigned cross sections ¥; = 12/5 and ¥9 = 1/15 to each phase,
respectively. For reference, the resulting attenuation law for s = 1 has Laplace transform:
Ti(p) 5 (253125p° + 2885625p* + 12987000p* + 29429325p? + 34664145p + 18270604) 19
1\p) =

(1125p% + 6975p? + 12915p + 5497) (1125p3 + 6975p% + 12915p + 9497)

We provide reflectance and transmittance means and variances in Table 2. We observed convergence to 10
places when truncating the sums in Eqgs.(12-13) to 17 terms (and 25 terms for the variances).

The mixing parameters for this benchmark were chosen in order to closely match the mean albedos of the
ALP Case 1 Markov ¢ = 0.9 benchmark (Table 1). In Figure 1, we compare both the mean and variance
of the rod albedos between the two benchmarks. The figure shows that although the mean observables are
well aligned over a range of system parameters, the variances are not as well aligned, clearly demonstrating
the insufficiency of the mean for adequately characterizing the effects of stochasticity on physical quantities
of interest. A large variance indicates that the system is inherently unpredictable and moment information
is of limited value under these conditions. Extreme event probabilities such as the probability of exceeding
threshold states are more meaningful in these situations, but clearly more challenging to compute.

4. TRANSFORMED-GAUSSIAN FLUCTUATIONS

Discrete fluctuations are not appropriate for every physical system. For radiation transport in turbulent
plasmas and neutron transport in boiling water reactors and liquid-fueled molten salt reactors, for instance,
random variation in the cross-section is more accurately characterized by continuous fluctuations. Gaussian
stochastic processes in space and time are widely employed in this context [13,14] but Gaussian fluctua-
tions of X are problematic because negative values of the cross-section are admitted, which is nonphysical
and leads to divergent solutions for the finite rod albedos. However, Gaussian processes can be used to
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drive fluctuations that give physically sound solution realizations. For instance, the Cox-Ingersoll-Ross
(CIR) Cox process, which is a Poisson process driven by the sum of k squared Ornstein-Uhlenbeck (OU)
processes, produces a k/2-gamma distributed stationary distribution for . These non-negative continuous
random fields are known as Feller processes [15], which are one of the six Pearson diffusions [16]. The
Feller process offers a flexible family of continuous noises with known attenuation laws, and we use it now
to present the first exact benchmark with scattering for a system with continuous fluctuations.

In the case of k = 1, corresponding to quadratic or squared-Gaussian statistics, the non-Markovian model
can be embedded in a higher order Markovian process by driving the fluctuations with white noise Gaussian
distributed stochastic n(z) with mean (n(x)) = 0 and correlation function (n(x) n(z')) = D §(x —2'). The
attenuation problem is then defined by the following pair of stochastic differential equations:

Lr(w) =€), )=, (200)
L e@) = ~ALl) +n(a), €0) =&, (20b)

where the initial condition £y may be random or deterministic. The constants A and D are free parame-
ters that can be used to appropriately scale the cross-section . The joint process (7, &) is Markovian with
respect to the penetration distance x and, using standard manipulations of such stochastic differential equa-
tions [17], the associated joint probability density function P(7, &, z) can be shown to satisfy the following
Fokker-Planck equation (FPE):

0 0 0 0 D 0?
%P(T,g,(lf) - _5 EP(Tvéa .CU) + A 876 [5 P(T7§7‘r)] + 5 8752]3(7-767$)7 (213)
P(1,£,0) = 0(7) Pe, (&0)- (21b)
The ensemble-averaged attenuation then follows from
(e7T@sy = / dg / e ST P(r,&, x)dr. (22)
0 0

While a closed-form solution for the three dimensional (in 7, &, x) joint distribution appears intractable,
ensemble averages with respect to 7 satisfy reduced order FPEs that are solvable in certain instances. In
particular, the partial ensemble average of the attenuation defined by

Rg.s) = [ P 3)
0
satisfies the lower-order equation FPE equation
0 0 D 0?

while Equation (23) yields (e~ 7(*)%) = Jo° R(&, x)d€. Equation (24) has been previously solved indepen-
dently in a different contexts and the general attenuation law is [18,19]
k

Ty(z) = ‘ Y el 25)

\/ (17 nyﬁ) sinh(nzy)

n

+ cosh(nzy)

where the autocorrelation of the k independent OU processes is R(|s — t|) = ((X)/k)e ¥I*~!. This form
of stochastic media has been recently proposed for particle-laden turbulent flow [20].
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(R(a))

Var(R)

(T'(a))

Var(T)

a
0.1
1.0
10.0

0.0389587226
0.1968964970
0.4158252491

0.0023550422
0.0262215535
0.0199327259

0.9511991933
0.7207973500
0.2894548605

0.0038604858
0.0641384161
0.0925975274

Table 3: Mean and variance of the rod albedos for our CIR binary benchmark.

4.1. A New Continuous-Fluctuation Benchmark

We define a CIR benchmark for the rod with & = 1,y = 0.1, (£) = 1, ¢ = 0.9, and isotropic scattering (g =
0). We provide reflectance and transmittance means and variances in Table 3. We observed convergence to
10 places when truncating the sums in Eqs.(12-13) to 17 terms (and 25 terms for the variances).

5. MARKOV n-ARY APPROXIMATIONS

The efficiency of our approach permits a practical scheme for fitting Markov n-ary mixtures to a given non-
Markov system. We present an initial investigation of this method here. Future work is required to more
broadly explore the relationships between Markov and non-Markov systems in higher dimensions, possibly
opening the door to applying methods such as chord-length sampling (CLS) and conditional point sampling
(CoPS) [21] to non-Markov systems.

In Section 2, we showed that the mean and variance of the albedos of the rod are both purely a function
of the scaled transmittance law Tg(x). Therefore, it suffices to find n-ary mixture parameters that jointly
minimize the loss of Ts(x) over a range of values s and distances x. In practice, the Laplace inversions
producing T(x) for an n-ary Markov mixture involve root finding that challenges non-linear optimization
routines. To circumvent this limitation, we note that the Laplace transforms of the attenuation law are
simpler rational expressions of s and p, and so we jointly optimize for 75(p) over a range of s values and
p values. We found that using integer multiples of the diffusion constant s for s and uniform spacing of p
works well in practice.

To demonstrate this approximation procedure, we approximated our CIR rod benchmark from the previous
section using an n-ary Markov mixture with n € {2,3,4,5}. Following Hobson and Scheuer, we used a
hierarchical transition matrix (), as detailed in [9, Sec.3.2]. This reduced the number of variables to solve
for in the approximation by requiring that the n phases adopt an increasing set of cross sections ¥; and,
additionally, that phase transitions are only permitted to the neighbouring phase(s). We used the FindFit
procedure in Mathematica to fit the Laplace transforms of the n-ary Markov attenuation law in Eq.(18) to
tabulated data of the target CIR system where s was the first 15 integer multiples of diffusion constant «,
and p was uniformly evaluated from 0 to 40 with dp = 0.1. For n > 2, we initially solved for parameters 3;
and mean chord lengths A; in a system constrained to exhibit equal volume fractions in each phase before
relaxing the model to permit arbitrary volumes fractions. Beginning the more general optimization with the
prior equal-volume-fraction initial conditions solved numerical issues in the optimization.

For the four approximations of order n, we found the transition matrices @,, to be:

~0.0637844  0.0637844 0
Q2 = < OeThanz Qe ) Qs = | 00528467 —0.0734912  0.0206445
' ' 0 0.0220164  —0.0220164
~0.130153 0130153 0 0
| 0133203 0205205 0.0720022 0
Qs = 0 0.051542 —0.0635521  0.0120101 |
0 0 0.0173386  —0.0173386
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and
—0.175419  0.175419 0 0 0
0.175419 —0.292094 0.116676 0 0
Qs = 0 0.116676  —0.196281 0.0796052 0
0 0 0.0796052 —0.111067 0.031462
0 0 0 0.031462 —0.031462

The volume fractions that result from these () matrices are, respectively,

7 = {0.454824,0.545176},

w5 = {0.299516,0.361506, 0.338978},

74 = {0.233353,0.227856, 0.318307, 0.220484},
75 = {0.2,0.2,0.2,0.2,0.2}.

We encountered numerical instabilities for the n = 5 optimization with arbitrary volume fractions and
instead report the equal-volume-fractions result for n = 5.

The optimal cross sections (and mean cross sections (X),, = .S, - 7,,) were found to be

S = {0.0733261,1.30711}, (S)g = 0.745957, (n = 2),
S5 = {0.0384934, 0.376838, 2.25165}, ($)3 =0.91102, (n = 3),
Sy = {0.0215733,0.200468, 0.739734, 3.06014}, ($)4 = 0.960887, (n = 4),
S5 = {0.0163243,0.143596, 0.491551,0.945288, 3.24069}, ($)5 = 0.96749, (n = 5),

where S5, form the S matrices in Eq. 18, consisting of ¥; for the corresponding approximation order n.

The accuracy of these approximations for both the mean and variance of the albedos as a function of rod
length is indicated in Figure 2. We see that all approximations do a reasonable job of fitting the mean
albedos, but the accuracy improves and the variance greatly improves as the number of phases in the ap-
proximation is increased.

6. CONCLUSION

We have presented an efficient framework for computing high-precision albedos for stochastic finite rods,
and used this to derive new benchmarks, which include binary Markov mixtures and a non-Markov binary
mixture with Erlang-distributed chord lengths. Moreover, we have introduced the first exact benchmark for
a scattering system with continuous fluctuations, using the Cox-Ingersoll-Ross process to model the cross-
section fluctuations.

Additionally, we have investigated the approximation of non-Markov systems by n-ary Markov mixtures,
which holds potential for enabling the application of efficient methods like chord-length sampling and
conditional point sampling to non-Markov systems. Our initial exploration demonstrates the feasibility of
this approach, although further research is required to establish a more comprehensive understanding of the
relationships between Markov and non-Markov systems.

In conclusion, the methods presented in this paper provide a foundation for more accurate and efficient
analysis of radiative transport in stochastic media. By establishing reliable benchmarks and exploring the
approximation of non-Markov systems by Markov mixtures, our work contributes to the development of
new techniques and insights that can help advance the understanding of complex stochastic linear transport
processes in various physical systems.
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